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A Transformation System for Developing Recursive Programs 
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ABSTRACT A system of rules for transforming programs is described, with the programs in the form of 
recurslon equations An imtlally very simple, lucid, and hopefully correct program is transformed into a more 
efficient one by altering the recurslon structure Illustrative examples of program transformations are given, 
and a tentative implementation is described Alternative structures for programs are shown, and a possible 
initial phase for an automatic or semiautomatic program mampulatlon system is indicated 
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1. Introduction 

We presen t  here  a system for t ransforming programs ,  where  the p rograms  are  expressed  
as first o rde r  recurs ion equat ions .  This  recursive fo rm seems well  adap ted  to manipula-  
t ion,  much  more  so than the usual Algol-s tyle  fo rm of  p rogram,  and our  t ransformat ion  
system consists of  just  a few simple rules toge ther  with a s trategy for  applying them.  
Despi te  their  s imphci ty,  these rules produce  some  interes t ing changes  in the programs .  

The  overa l l  aim of  our  invest igat ion has been  to help  peop le  to write correc t  p rograms  
which are easy to alter.  To  p roduce  such p rograms  it seems advtsable to adopt  a l u o d ,  
mathemat ica l ,  and abstract  p rog ramming  style. If  one  takes  this real ly seriously,  at- 
t empt ing  to free one ' s  mind  f rom cons idera t ions  o f  computa t iona l  e f f ioency ,  there  may  
be a heavy penal ty  in p rog ram running t ime;  in pract ice it is of ten  necessary to adopt  a 
more  intr icate  vers ion  of  the p rogram,  sacrificing comprehens ib i l i ty  for speed.  The  
ques t ion  then  arises as to how a lucid p rog ram can be t ransformed into a m o r e  intr icate 
but  e f f i o e n t  one  in a systematic  way, or  indeed  in a way which could be mechan ized .  

It  is perhaps  surprising to not ice that  even  in the raref ied language o f  purely  recursive 
p rograms  there  ~s a sharp contras t  be tween  p rograms  wri t ten for maximal  clarity and 
those wri t ten for to lerable  eff iciency.  As  Knu th  [11] points  out ,  one  does  not  have  to 
cons ider  t ranslat ion f rom an Algol-s tyle  language to a machine  code  language as 
p e r f o r m e d  by opt imizing compi lers  to get  to grips with the issue; the contras t  ~s in the 
p rogram structure ,  part icularly in the recurs ion (or loop)  s t ructure .  We  start  with 
p rograms  having ex t remely  simple s tructures and only la ter  in t roduce  the compl ica t ions  
which we usually take for  gran ted  even  in high level  language programs .  These  complica-  
tions arise by in t roducing useful in teract ions  be tween  what  were  original ly separa te  parts  
of  the p rogram,  benef i t ing by what  might  be cal led " e c o n o m i e s  of  in te rac t ion . "  

We  p roceed  in a qmte  empir tcal  manne r ,  showing examples  of  var ious  kinds of  
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program transformation and how they can be achieved with our system. We make no 
cimm for any sort of completeness of the system; it embodies only one family of program 
transformations, and we have no formal delineation of this family. Nor do we have a 
general method of showing that the transformations ~mprove efficiency. However, we 
hope that the examples will give the reader pleasure and convince him that the system 
has some power. He wdl see that the example programs become more complicated or 
"intertwined" as we transform them, less hke mathematical definitions and more like 
"sensible" programs. We would be grateful for any suggestions for capturing this notion 
of intertwining more precisely. 

The transformation rules can also be viewed as a possible initial phase of a mechanized 
program transformation system In fact they arose from our efforts to understand and 
systematize parts of an earlier system (Darlington [5], Darlington and Burstall [6]). That 
system started by remowng recurslons in favor of iterations where possible; only then did 
~t make transformations from abstract to concrete data and ehmlnate some redundant  
computaOon; finally it arranged for overwriting of data structures. We now feel that as 
much manipulation as possible should be performed before removing recursion. In this 
we were largely influenced by Boyer and Moore's elegant and successful program for 
proving facts about Lisp programs [2] 

We have implemented our new rules as a semiautomatic program transformation 
system which relies on guidance from the user for key steps. 

In Section 2 we introduce the transformation method informally In Section 3 we 
present it as a formal reference system whose sentences are sets of recurslon equations. 
In Section 4 we gwe examples of its application. In Section 5 we outline a strategy for 
applying these transformation rules and describe the program improvement system 
which we have implemented. In Section 6 we discuss conversion to iterative form. In 
Section 7 we discuss a further rule that can be added to our system In Sectmn 8 we 
discuss translation of programs on abstract data to ones on concrete data In Section 9 we 
list some open problems and related work. Finally, in Appendix 1 we apply our method 
to a more substantial example, and in Appendix 2 we show how it is possible to prove 
that the transformations do effect an improvement on a particular program. 

2. An  Example" 

Consider the following simple example. Given a function scalar product, written ".  ", on 
vectors, defined by 

// 

x ' y =  ~ x ,y , ,  
1 = 1  

we might wish to compute a- b + c- d. Rewriting this in recursive function form we have 

dot(x, y ,  n) ~ i fn  = 0 then 0 else dot(x, y ,  n - 1) + x[n]y[n] fi 

and we want 

f(a,  b, c, d, n) ~ dot(a, b, n) + dot(c, d, n) 

This ~s a clear deflmtion of f ,  but we do not really need two separate recursive 
calculations (i.e. two independent  loops) Let us try symbolically evaluating f using its 
definition 

f (a,  b, c, d, n) ~ if n = 0 then 0 else dot(a, b, n - 1) + a[n]b[n] fi 
+ if n = 0 then 0 else dot(c, d, n - 1) + c[n]d[n] fi 
if n = 0 then 0 + 0 else (dot(a, b, n - 1) + a[n]b[n]) 

+ (dot(c, d, n - 1) + c[n]d[n]) ti 
by a simple property of if • • • then 

i fn  = 0 then 0 else (dot(a, b, n - 1) + dot(c, d, n - 1)) 
+ a[n]b[n] + c[n]d[n] fi 

by simple properties of + and a sly rearrangement.  
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But dot(a, b, n - 1) + dot(c, d, n - 1) l s f (a ,  b, c, d, n - 1), so we write 

f(a,  b, c, d, n) ~ if  n = 0 then 0 else f(a, b, c, d, n - 1) + a[n]b[n] + c[n]d[n] ft. 
This gives us a recursive definition of f ,  without using dot. It does not save any 

multiplications or  additions (except the final one) but it combines the loop overheads and 
tests. Notice how the two scalar product calculations have become intertwined. Our  
(shght) economy comes from this interaction; we have lost luc,dlty by it 

Thus we have first symbolically evaluated the program (we call this "unfolding") ,  then 
rearranged it, and then introduced a recursion (we call th,s "folding").~ Let  us now be 
more precise about  these transformation rules 

3. Transformation Rules 

First let us pohsh our notat ion a httle. A definition like 

dot(x, y ,  n) ~ if n = 0 then 0 else dot(x, y ,  n - 1) + x[n]y[n] fi 

is convenient  for program execution,  but for transformation purposes it seems rather 
easier to rewrite ~t as 

dot(x, y ,  O) ~ 0 
dot(x, y ,  n + 1) ~ dot(x, y ,  n) + x[n + 1]y[n + 1] 

This is easily translatable back into the condit ional  form, given that 0 and x + 1 are 
mutually exclusive and exhaustive forms for nonnegatlve numbers and that x - 1 is the 
inverse of x + 1. 

As another  example,  the Fibonacci function 

f(x)~ifx = 0 o r x  = l t h e n l e l s e f ( x -  1) + f ( x -  2) fi 

becomes 

f ( 0 ) ~ l ,  f ( 1 ) ~ 1 ,  f(x + 2) ~ f(x + 1) + f(x) 

The concatenation function on lists 

concat(x, y) ~ i f x  = ml then y else cons(car(x), concat(cdr(x), y)) fi 

becomes 

concat(nil, z) ~ z, concat(cons(x, y), z) ~ cons(x, concat(y, z)) 

Reworking the scalar product  example,  we get 

f(a, b, c, d, n) ~ d o t ( a ,  b, n) + dot(c, d, n) 
f(a, b, c, d, O) ~ dot(a, b, O) + dot(c, d, O) 

©o 
f ( a , b , c , d , n  + 1) ~ d o t ( a ,  b, n + 1) + dot(c, d, n + 1) 

~ d o t ( a , b , n )  + a[n + 1]b[n + 1] + dot (c ,d ,n)  + c[n + 1]d[n + 1] 
~ d o t ( a ,  b, n) + dot(c, d, n) +a[n + 1]b[n + 1] +c [n  + 1]din + 1] 
~ f ( a ,  b, c, d, n) + a[n + 1]b[n + 1] + c[n + 1]d[n + 1] 

We can now develop the method as a formal inference system whose sentences are 
recurslon equations We omit  definitions of well-known notions like instance and assume 
the usual call-by-name semantics of recursion equations.  

Prehmmarles. We need the following: 
Primitive function - a  set of pnmltwe function symbols k, l . . . .  and c, d , . . .  with zero 

or more arguments;  the subset c, d , . . .  of pr,mlttve symbols are the constructor function 
symbols. (One of the primitive functions can be the condit ional.)  Examples  of construc- 
tor functions would be cons and successor, which ~s w r i t t e n . . .  + 1 above 

The folding idea is also used by Manna and Waldlnger  [12] m their program synthesis work They developed 
it independent ly  at about the same t ime as we d,d 
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Parameter- a set x, y . . . .  of parameter  variables. 
Recursive function - a  set f ,  g, . . .  of recursive function symbols. 
Expression-an expression budt in the usual way out of primitive function symbols, 

parameter  variables, and recurslve function symbols. We allow the w h e r e  construc- 
tion E w h e r e  (u, • • • , w) = F or E where u = F, E and F being expressions and u, 
• • • , w being taken from a set of local variables (for example u + u 2 where u = a + b) .  

Left-hand expresston-a left-hand expression is of the form f(el, "'" , e,), n -> O, 
where el, " ' "  , en are expressions involving only parameter  variables and constructor 
function symbols (disallowing where).  

Rtght-hand expression-a right-hand expression is an expression. 
We use E,  F, G, possibly with primes or  subscripts, as metasymbols to denote 

expressions. 
Recursion equation-a recursion equation consists of a left-hand expression and a 

right-hand expression, written E ~ F. 
Examples. f(c) ~ k. f(d(x, y)) ~ l(u, u) where u = m(x, y). 
We have the usual notion of substitution and of one expression being an instance of 

another.  
Inference rules for transforming recurston equattons. Given a set of recursion equa- 

tions, we may add to the set using the following Inference rules, all except folding being 
rather obvious. We illustrate the rules by reference to the above example.  

(i) Definition. Introduce a new recursion equation whose left-hand expression is not 
an instance of the left-hand expression of any previous equation. For  example,  

f(a, b, c, d, n) ~ dot(a, b, n) + dot(c, d, n). 

(U) Instantiatton. Introduce a substitution instance of an existing equation.  For  
example,  instantlate 

f(a, b, c, d, n) ~ dot(a, b, n) + dot(c, d, n) 

to 

f(a, b, c, d, O) ~ dot(a, b, O) + dot(c, d, 0). 

(nl) Unfoldmg If E ~ E '  and F ~ F '  are equations and there is some occurrence in F '  
of an instance of E ,  replace it by the corresponding instance of E ' ,  obtaining F"; then add 
the equation F ~ F". For  example,  unfolding with 

dot(x, y, n + 1) (= dot(x, y, n) + x[n + 1]y[n + 1] (E (:z E ' )  

takes 

f(a, b, c, d, n +  1) (:: dot(a, b, n + 1) + dot(c, d, n + 1) (F ~ F ' )  

to 

f(a, b, c, d, n + 1) ~ dot(a, b, n) + a[n + 1]b[n + 1] + dot(c, d, n) + c[n + 1]d[n + 1] 
(F ~ F"). 

(w) Folding. If E ~ E '  and F ~ F '  are equations and there is some occurrence in F '  of 
an instance of E'~ replace it by the corresponding instance of E,  obtaining F"; then add 
the equation F ~ F". For example,  folding with 

f(a, b, c, d, n) ~ dot(a, b, n) + dot(c, d, n) (E ~ E') 

takes 

f(a, b, c, d, n + 1) (:: dot(a, b, n) + dot(c, d, n) + a[n + 1]b[n + 1] + c[n + 1]din + 1] 
(F  ~ F ' )  

to 

f ( a , b , c , d , n  + 1) ~ f ( a , b , c , d , n )  + a[n + l]b[n + 1] + c[n + 1]d[n + 1] (V ~ F"). 
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(v) Abstraction. We may introduce a where clause by deriving from a previous 
equation E ~ E '  a new equation,  

E ~ E'[ul/F~, " . .  , un/Fn] where (ul, - ' .  , un) = (F1, " ' "  , Fn). 

Abst racuon is not used in the dot example.  We can see an example of its use in the 
Fibonacci example in Section 4. 

(v 0 Laws. We may transform an equation by using on its r ight-hand expression any 
laws we have about the primitives k, l, . .  (associatlwty, commutativl ty,  etc.) ,  obtaining 
a new equation For  example,  the commutativity of + enables us to rewrite 

f(a, b, c, d, n + 1) ~ dot(a, b, n) + a[n + 1]b[n + 1] + dot(c, d, n) + c[n + l]d[n + l ]  

a s  

f(a, b, c, d, n + 1) ~ dot(a, b, n) + dot(c, d, n) + a[n + 1]b[n + 1] + c [n + l ~ [ n  + 1]. 

Each new equation obtained by these rules may be taken as a definition of  the function 
appearing on the left provided we take a disjoint and exhaustive subset of them. (The 
notions of dlslolntness and exhaustiveness depend on the data  domain;  we do not 
at tempt an expl io t  definition but they should be clear enough for integers,  hsts, etc.) 

We believe that these reference rules preserve correctness,  although we do not have a 
formal proof  of this. An  informal argument,  for which to thank G.  Plotkin, ~s that the 
effect of using our rules could equally well be obtained as follows: First rewrite the 
definitions, say E ~ E',  F ~  F ' , . . .  0),  as the corresponding equations E = E ' ,  F = F ' ,  
• . .  (n); now each of  our transformation rules can be seen to correspond to a sound rule 
for deducing a new equation,  so use these rules to get new equations,  say E1 = E'i, F~ = 
F~, . . (di); then choose a subset of these (exhaustive and disjoint) ,  say E2 -- E~, F2 = 
F~ . . . .  (iv), then rewrite these as definitions E2 ~ E~, F2 ~ F~, . . .  (v). Now the 
functions defined by (v) satisfy eqs. 0v) and are the least such functions. But the 
functions defined by 0) satisfy eqs. (u) and hence eqs. (rio and hence eqs. 0v) So the 
functions defined by (v) are less than or equal to the ones defined by 0)- ( f i s  less than or 
equal to g if f (x) = g (x) whenever f ( x )  is defined ) That is, we retain correctness,  but we 
might lose termmahon unless we impose some extra restriction 

As to whether our t ransformahons improve the eff ioency of programs,  we do not 
know sufficient conditions for this in general .  However ,  in Appendix  2 we show that they 
do improve the F ibonaco  program (and so a for t lon preserve its termination).  The 
reasoning employed suggests a general argument that 

(l) improvements  can be introduced by rewriting lemmas and by abstraction; 
(ii) mstantlation and unfolding leave eff loency unchanged; 

(Ul) folding at least preserves efficiency provided that the argument of the equation 
used in the substitution is lower Jn some well-founded ordering than that of the equation 
being transformed.  

Strategy. A simple strategy for applying these rules turns out to be quite powerful,  and 
It  wdl be used in the examples which follow. Thus. 

(a) Make any necessary definmons. 
(b) Instantiate. 
(c) For  each mstantiation unfold repeatedly.  At  each stage of unfolding: 

(d) Try to apply laws and where-abstraction. 
(e) Fold repeatedly• 

Stages (a) and (b) require some invention from the user, (d) reqmres his d~scretlon, 
but (c) and (e), unfolding and folding, are routine symbol manipulation.  

We discuss strategy and a semmutomatlc lmplementaUon in Section 5. 

4. Examples o f  Use o f  the Transformation System 

Example 1. Fibonaco.  Let us look at a case where we can make a substantml gain in 
efficiency by introducing a new recurslve definition which intertwines what were origl- 
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nally separate computations. In this case we avoid computing certain values twice. 
We use "eureka"  to draw attention to certain unobvious steps in the transformations.  

The reader  may feel that certain other  steps deserve "eureka ."  In Section 5, however,  
we describe a program improving system based on the transformation rules and show 
how it can automatically achieve these steps. The steps marked here indicate the help the 
user has to give the system at present.  

We take the definition of F~bonacci made in Section 3 as our starting point.  (We 
regard x + 1 as an abbreviat ion for successor(x) and pairing as a primitive function 
written ( . . . . . . .  ).) 

1. f(0) 'x:::: 1 given 
2. f(1) ~ 1 given 
3. f(x + 2) ~ f(x + 1) + f(x) given 
4. g(x) ~ (f(x + 1), f(x)) defimtion (eureka) 
5. g(O) © ~f(1), f(O)) instantmtion 

(1, 1) unfolding with 1 and 2 
6. g(x + 1) ~ ~(x + 2 ), f(x + 1)) instantiate 4 

(f(x + 1) + fix),  f(x + 1)) unfold with 3 
(u + v, u) w h e r e  (u, v) = (f(x + 1),f(x)) abstract 
(u + v, u) where (u, v) = g(x) fold with 4 

7. f(x + 2) ~ u  + v where (u, v) = (f(x + 1),f(x)) abs t r ac t3  
u + v where (u, v) = g(x) fold with 4 

f(o) 
f(~) 
f(x +2) 
g(O) 
g(x + 1) 

Now notice the pattern of applying the inference rules. 4 comes by insplrahon,  
although motwated somewhat by 3. 5 and 6 are the obvious instantiat~ons of 4; for each 
of them we first unfold as far as possible, then for 6, abstract m order  to fold. 7 is an 
unobvlous abstrachon of 3 made in order  to fold. 

Thus the new definmon of Flbonaccl is: 

© 1  

u + v w h e r e  (u ,  v) = g(x) 
(1, 1) 
(u + v, u) w h e r e  (u, v) = g(x) 

This computes the result in linear time in x instead of exponentmi. 
Example 2. The scalar product example combined two independent  loops into one;  

the F~bonacci example transformed a binary recursion into a loop. Our  next example 
combines two binary recurs~ons into one. We assume a tree ~s either ttp of an atom or tree 
of two trees, where tip and tree are constructor functions. We are given f ,  which 
computes the sum of the tips, and g, which computes their product ,  and we wish to 
compute both of them at once. 

1. f(tip(x)) ~ x  
2. f(tree(x,y)) ~ f ( x )  + f(y) 
3. g(tip(x)) ~ x  
4. g(tree(x, y)) ~ g(x)*g(y) 
5. h(x) ~ ~f(x), g(x)) 
6. h(up(x)) ~ (f(ttp(x)), g(tip(x))) 

¢ (x, x) 
7. h(tree(x, y)) ~ dr(tree(x, y)), g(tree(x, y))). 

q(x) + f(y), g(x)*g(y)) 
(u + v, w,t) w h e r e  (u, w, v, t) = ~f(x), g(x),f(y), 

g(y)). 
(u + v, w,t) w h e r e  ((u, w), (v, t)) = (h(x), h~v)). 

Thus h computes both functions at once. 
Example 3. Table of factorials. 

may define naively: 

given 
given 
given 
given 
given 
mstantiat ion 
unfolding 1, 3 
mstantmtion 
unfolding 2, 4 
abstraction 

folding with 5 

Suppose we want to make a table of factorials. We 
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1. fact(O) ~ 1 
2. fact(n + 1) ~ (n + 1),fact(n) 
3. factlist(O) ~ nil 
4. factlist(n + 1) ~ cons(fact(n +" 1), facthst(n)) 

Thusfacdist(4) is (24, 6, 2, 1), but each of these is computed afresh. Let us improve the 
definition of factlist: 

5. g(n) ~(fact(n + 1),factlist(n)} 
6 g(0) ~ (fact(l), facdtst(O)) 

(1, nil) 

defimtion (eureka) 
instantiate 5 
unfold 2, 4, 1 and use 

law about * 
instanuate 5 
unfold 2, 4 

7. g(n + 1) ~ ~fact(n + 2), facthst(n + 1)) 
((n + 2)*fact(n + 1), cons(fact(n + 1), 

factlist(n))) 
((n + 2)*u, cons(u, v)) where (u, v} = abstract 

~fact(n + 1), facthst(n)) 
((n + 2)*u, cons(u, v)) where (u, v) = fold with 5 

g(n) 
8. facthst(n + 1) ~ cons(u, v) where (u, v) = (fact(n + 1), abstract 4 

factlist(n)) 
~cons(u, v) where (u, v) = g(n) fold with 5 

This new definition of factlist computes fact(n + 1) from fact(n), cutting down the 
computaUon from Ume n 2 to time n. Notice, however, that to do factlist in ascending 
order is not easy with our techmque and seems to require an extension of the rules. We 
are currently investigating this problem. 

Example 4. Testing trees for equality of frontiers. Another  example of a more 
substantial nature ~s a program to test whether two binary trees have the same frontier, 
that is, the same sequence of atoms at their tips. An obvious definmon revolves first 
computing the frontier list for each and then comparing these two lists element by 
element. The comparison can stop as soon as two differing elements in these hsts are 
detected, but by that time we would have already computed the whole fronUer lists, quite 
unnecessarily. Because the two trees may differ m shape, it ~s not easy to compare the 
two frontwrs element by element as they are generated. Indeed this was proposed as a 
problem to illustrate the virtues of coroutines. However,  our transformation system can 
produce a satisfactory recurswe program provided the user defines a generalization of 
the problem, namely comparing the frontiers of two lists of trees instead of two single 
trees The formal defimtion of the problem and the details of the transformations 
required are quite long, so we have relegated them to Appendix 1. 

5. Strategies for Applying the Transformatton Rules, and Implementation o f  a Program 
Improving System 

Instead of  just having a set of transformation rules which can be freely applied tn all 
possible ways, we would like a more algorithmic system, avoiding search as far as 
possible. We are experimenting with strategies for applying the rules such as the strategy 
described briefly above Some observations seem helpful. 

(i) Almost all the optimizing transformations consist of a sequence of unfoldmgs, 
rewriting by lemmas, and then foldmgs. 

(i 0 Use of associativity, commutatwity, and where-abstraction can usually be de- 
layed until just before folding. 

We use (ii) to cut down frmtless use of associatwity, commutativlty, and where- 
abstraction by combining them with the folding process, using them only when they 
make a fold possible. We call this combined step "forced folding" and discuss it in more 
detail later. 
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The following heuristic a lgonthm is based on these assumptions. This algorithm is 
applied to each instantiation of the equation to be improved. 

Algorithm 1 

1. Arbi t rar i ly  do an unfold or rewriting by a lemma. Arbitrari ly either repeat  step 1 or 
go to step 2 

2. Do an arbitrary forced fold. Repeat  step 2 until no more folding is possible. 

The arbitrary choices are made in an exhaustive manner using backtracking.  Algo- 
rithm 1 ts quite laborious, a further observation gwes us a faster but less general 
algorithm 

(ill) In the cases where our equational method of writing programs using constructor 
operat ions on the left-hand side ensures that unfolding cannot go on indefinitely, folding 
can usually be delayed until all possible unfolding has been done,  provided that all the 
equations in the system are kept m fully unfolded form. 

Algori thm 2 is based on this assumption. 

Algorithm 2 

0. Unfold each equation until no further unfolding is possible. 

For each mstantiation of the equation to be improved: 

1. Unfold until no further unfolding is possible. 
2. Arbitrar i ly either do rewriting by a lemma and goto step 1 or goto step 3. 
3. Do an arbitrary forced fold Repeat  step 3 until no more folding is possible. 

Both Algori thms 1 and 2 succeed for all the examples given here with the exception of 
part of Treesort (Section 8). 

A PROGRAM IMVROVIN~ SYSTEM. We have implemented an expenmenta l  heuristic 
program improving system based on the transformation rules and Algori thms 1 and 2. 
As we have mentioned,  an earlier program ~mprowng system has been described 
(Darlington and Burstall [6]) which enabled the user to write his program in a high level 
abstract language using recurs~on equations and have them translated into more efficient 
but less transparent versions. This earher  system used several separate transformation 
processes; the transformation rules described here unify and extend these processes 
except for storage overwriting, which we have not yet considered. 

At  present in the new system the work is shared, though not lnterachvely,  between the 
user and the system. As the system is developed we hope to shift more work from the 
user. At  present (January 1976) the user is required to give: 

(i) The hst of equations augmented by any necessary definitions (i.e. the ones 
marked with "eureka"  in the examples).  

(u) A hst of useful lemmas in equation form (for use as rewrite rules) and statements 
of which functions are associative or commutative or both.  

(ii 0 A hst of all the properly instantmted left-hand sides of the equations on which the 
user wants the system to work. 

The system then searches through the space of all possible transformations of (lii) 
looking for folds with 0) using either Algori thm 1 or Algori thm 2 as desired. The 
resulting new equations are printed out for examination by the user. At  present no effort 
is made by the system to assess the efficiency of these new definitions. 

A sample of a dmlogue with the system for the Fibonaccl improvement  is shown in 
Table I. 

To see whether a fold can be achieved we use a matching routine. Gwen two 
expressions this seeks a substitution which transforms the first into the second; for 
example,  gwen n + (m + k) and (n + 1) + (m + k) it finds that the substitution n goes to 
n + 1. Our  matching routine has commutatw~ty and assocmtivity budt into it where this is 
specified; for example,  given n + (m + k) and m + (n + 1 + k) it can still fred the same 
substitution. It is also capable of matching to within an abstraction; an example of this is 
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TABLE I. SAMVLE DJALOOU£ FOR FIBOIqACCl 

START; (user starts dialogue) 
INPUT EQUATIONS, END WITH Z (system responds) 
f(0) ~ 1 (user inputs equations) 
f(t) ~ 1 
f ( x+2)  ~/(x  + 1) + f(x) 
g(x) ~ (f(x + 1), f(x)) 
z 
INPUT REWRITING LEMMAS, END WITH Z 
Z (no lemmas needed; assoclatlvlty and commutatwlty are indi- 

cated when the functmns are declared) 
INPUT INSTANCES OF FUNCTIONS YOU 
ARE INTERESTED IN, END WITH Z (system responds) 
g(o) 
g(x + 1) 
f(x + 2) 
z (system starts work outputtmg results as it gets them) 
g(O) ~ (1, 1) (system outputs any ground term ~t achieves) 
g(x + 1) ,(= (u + v,  u) where (u, v) = g(x) 

several other folds 
f(x + 2) © u + v where (u, v) = g(x) 

(system outputs any fold it achieves) 

several other folds 

given below. Thus these laws are never applied unless they immediately result in a fold. 
Plotkin [14] gwes a general  theory of braiding in laws to unification. We are grateful to 
Rodney Topor  for the associatwe and commutat ive parts of the matcher [15]. 

For  an example of mbuilt  where-abstraction,  consider the F tbonaco  example .  Simple 
unfolding gives the system g(x + 1) ~ (f(x + 1) + f ( x ) , f ( x  + 1)), which it is trying to fold 
with g(x) ~ (f(x + 1), f (x) ) .  

The matching routine spots that all the necessary components  for a match with (f(x + 
1), f (x ) )  are present within (f(x + 1) + f ( x ) ,  f ( x  + 1)), and it forces the rearrangement  of 
the lat ter  into (u + v, u) w h e r e  (u, v) = 6¢(x + 1),f(x)) by applying abstraction; this folds 
immedmtely 

FUTURE DEVELOPMENTS. A desirable next stage in the development  of our system is 
to get it to produce automatically the definitions that  the user currently has to supply. 
This is where a lot of the cleverness of the optimizat ion resides. Though m a number  of 
cases it is clear how to do this theoretically,  it is not  yet clear whether it can be done 
efficiently without excessive search. The idea is to expand out to some extent  the 
computat ion tree generated by the equations and then to look for a match between the 
higher nodes in this tree and the lower ones. We need a substitution which when applied 
to the lower nodes gives the higher ones. 

Consider,  for example,  the hst of factortals problem above where we were gwen the 
equations 

fact(n + 1) ~ (n +" 1)*fact(n) 
factlist(n + 1) ~ cons(fact(n + 1), factlist(n)) 

We would like to express factlist in terms of  some new function, say g,  which would 
itself have a recursive definition of the form g(n + 1) ~ - . -  g(n) . . .  or,  more generally,  
g(o-(n)) ~ . ' .  g(n) . "  for some arbitrary substitution or. 

Since we cannot expand factlist(n + 1) further,  we try factlist(n + 2); thus 

factlist(n + 2) ~ cons~act(n + 2), [actlist(n + 1)) 
cons((n + 2)*fact(n + 1), cons(fact(n + 1), factlist(n))) 

Pictorially the execution tree ts of the form 
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facthst(n + 2) 

fact(n + 2 ~  

~ - - f a c t ( n  + l/~) ~ f  acthst(n) 

We notice that the substitution o-(n) = n + 1 takes the pair of terms on the bottom line 
to those in the previous line. Thus if we put 

g(n) ~ (fact(n + 1), factlist(n)) 

we can expressfactlist(n + 2) in terms ofg(n + 1) and expressg(n + 1) m terms ofg(n). 
Similarly in the Fibonacci example we have the definition f(x + 2) ~ f(x + 1) + f(x). 

Even without further expansion we have the computation tree 

and notice that we can find a substitution or(x) = x + 1 which takes the lower pair of 
nodesf(x + 1) andf(x) to the higher (overlapping) pairf(x + 2) andf(x + 1). Thus putting 
g(x) © (f(x + 1), f(x)) we can express f(x + 2) in terms o f g ( x  + 1), and express 
g(x + 1) in terms o fg (x ) .  

Thus we see that the general approach is to expand out the computation tree and seek 
a substitution, taking some lower 'slice' across it into a higher shce across it. It is 
appropriate for examples where the auxihary definition is a tuple of terms occurring in 
the computation, but we will see other examples where it does not work. In Section 6, 
recurs~on to iteration, we will need to introduce an extra variable, and in Appen&x 1 we 
generalize from an element to a list of elements. Still it does show some rationale for 
auxiliary definitions. 

One further development we wish to incorporate in the near future is to give the 
matcher the ability to synthesize subsidiary functions. Further detads of this technique 
can be found in Darhngton [7]. 

6. Conversion to Berative Form 
The same transformation system can be used to convert from recursive to iterative form. 
We say that a set of definitions of functions {fl, "'" , fro} are in lterative form if for each 
equation f~(xl, "'" , xn) ~ E, either E does not contain any of the f~, or it is of the form 
f~(El, "'" , En) and El,  "." , En do not contain any of the fz, or it is a conditional 
expression whose alternatives are of one of these forms Such recursive definitions can be 
trivially rewritten as loops with the f, as labels. The transformation is not automatic, as 
we have to introduce a new defimtion each time; however, these defimtions are all of a 
similar pattern and are "generalizations" of the original function definition, replacing 
subexpressions on the right by variables and including the variables as extra parameters; 
in each case the major operator on the right is associative. Such generalizations were 
central to the success of the Boyer-Moore program prover [2], and we have profited 
from the studies of Aubin  [1] and Moore [13] who extended that prover to deal with 
programs in the above lterative forms; they use generalization to translate from iterative 
to truly recursive form (the opposite approach to ours). 

Example 1. Factorial. 

1. factortal(O) ~ 1 given 
2. faetorial(n + 1) ~ (n + 1)*factorial(n) given 

Introduce a new function f by generalizing n + 1 to u. 
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3. f(n, u) ~ u.factorial(n) 
4. f(O, u) ~ u 
5. f(n + 1, u) ~ u*((n + 1)*factorial(n)) 

~ f(n, u*(n + 1)) 
6. factorial(n + 1) @f(n,  n + 1) 

This definition ( l ,  6, 4, 5) is in l terative form. 

definition (eureka) 
instantiate,  unfold 
lnstantiate,  unfold 
associativity of  *, fold with 3 
fold 2 using 3 

A more succinct definition would be obtained by replacing 1 and 6 by factorial(n) 
f(n, 1). Our  rules, as they stand, do not allow us to derive this, but m Section 7 we discuss 
an addit ional  rule which would yield it. 

Example 2. List reverse. 

1. reverse(nil) ~ ml given 
2. reverse(a :: x) ~ reverse(x) () (a :: nil) given 

(:: and 0 are infixes for cons and concat; see Section 3 for defimtion.) 
Introduce a new function f by generalizing a :: nil to u. 

3. f(x, u) ~ reverse(x) () u definition (eureka)  
4. f(nil, u) ~ u mstantiate and unfold 
5. f(a :: x, u) ~ (reverse(x) () (a :: nil)) 0 u instantiate and unfold 

f(x, (a :: rot) 0 u) assoclauvlty and fold 

( ~ f ( x ,  a :: u) if we allow further unfolds, which is however contrary to our mechanzed 
strategies.) 

6. reverse(a : : x )  ~ f ( x ,  a :: nil) fold 2 with 3 

Again this is in iterative form As before reverse(x) ~ f ( x ,  nil) instead of 1 and 6 would 
be more succinct but requires the extra rule described in the Secuon 7. 

Example 3. Front ier  of a tree. This example uses the same generalization but does 
not produce an lterative function. It produces an equation of the form 

f (x~ , ' "  ,xn) ~ f (E~ ," . ,  En) 

but the E, do contain f The new defimtion,  however,  is faster. 
As in a previous example,  by the frontier of a tree we mean the list of its tip elements 

We need two constructor functions: up (to indicate a tip element)  and tree (to form a 
binary branch).  

1. fronner(tip(a)) ~ a :: nil 
2. frontier(tree(tl, t2)) ~ frontier(tl) () frontier(t2) 

Introduce f by generalizing 

3. f(t, u) 
4. f(tip(a), u) 
5. f(tree(tl, t2), u) 

6. frontier(tree(tl, t2)) 

frontier(t) 0 u 
~ a  : lU 
¢ (frontier(tl) ()frontier(t2)) () u 
¢ f(tl ,  f(t2, u)) 

¢ f l t l ,  frontier(t2)) 

given 
given 

definition (eureka) 
instantmte, unfold 
instantiate,  unfold 
associativity, fold, 
fold 
unfold 2, fold with 3 

This definition (1, 6, 4, 5) is faster since it only uses :: and not (). 
frontier(t) ~ f(t, nil) is more succinct, but as before it needs an extra rule. 

7. An Extra Transformation Rule: Redefinition 

The transformation rules described so far have allowed us to start  with a definition of a 
function, lnstantlate it, unfold, and fold to get a new recurswe definition of it. But 
sometimes for the sake of efficiency we may wish to move sn the opposite direct~on. Here  
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Is an example of an improvement  which cannot be made by our system so far (this IS due 
to Michael Paterson).  We define f by 

1. f(0) ~ 0 definition 
2. f(n + 1) ~ f(n) definmon 

Now a bet ter  defininon of f would be 

f(n) ~ 0 (?) 

but this is clearly not obtainable by instantiation, unfolding, and folding, havmgf(n)  on 
the left. 

But the reverse direction can be done by our rules: 

3. f'(n) ~ 0 definition 
4. f'(O) ~ 0 lnstantiate 
5. f'(n + 1) ~ 0 mstantlate 

~ f ' ( n )  fold with 3 

Now Dana Scott pointed out to us recently that we could introduce an extra rule into 
our system, making use of the fact that if we can transform a function definition (say 3) 
into a set of equations (4, 5) Identical to those defining some previous function (1 ,2 ) ,  we 
know that the newly defined function is equal to the previous one wherever the latter 
terminates.  (We should check the totality of the previous definition to ensure that the 
new one does not introduce spurious values where the previous one failed to terminate . )  

Since we have just shown that f '  satisfies 4 and 5 and these are identical to 1 and 2 
which define f ,  we may use this to redefine f to be 

3. f(n) ~ 0 

We call this new rule "redef ini t ion."  In general we are given a function (totally) 
defined by some equations and proceed as follows: 

(a) Make a new definition for the given function (eureka) 
(b) Transform this new defimtion by our previous rules to get equations identical to 

the original equations for the given function. 
(c) Replace the original equauons by the new definition (redefinition rule).  
We have not had time to explore the utility of this new rule, which essentially allows us 

to reverse our previous transformations.  However  it does clear up a difficulty ment ioned 
in our recurslon to iteration examples above Recall that our final defimtion of factorial 
was 

1. factorial(O) ~ 1 
6. factortal(n + 1) ~ f(n, n + 1) 
4. f(O,u) ~ u  
5. f(n + 1, u) ~ f(n, u*(n + 1)) 

Now to obtain a better  (smaller although no 

7. factorial'(n) ~ f(n, 1) 
8. factorial'(O) ~ f(0, 1) 

9. factorial'(n + 1 ) ~ f ( n  + 1, 1) 
f(n, n + 1) 

Now we use our new rule, noting the identity 
latter with a copy of 7. 

10. factortal(n) ~ f(n, 1) redefinition 

Similarly we can obtain succinct definitions for reverse and frontier. 

faster) version 

definition (eureka) 
instantiate 7 
unfold with 4 
mstantiate 7 
unfold with 5, use l*x = x 

of 8 and 9 with 1 and 6 and replacing the 
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We have not implemented this new rule m our mechanized system, this could be put in 
as an extra option w~th the user asserting, say 

factorial(n) ~ f(n, 1) by redefinition 

where the system could look up 1 and 6, instantlate the new deftmtlon similarly, unfold, 
check the identity of the equations so obtained with the previous ones,  and then remove 
1 and 6 in favor of this new defimtion. 

8. Abstract Programming and Data Type Change 

In Darlington [5] and Darlington and Burstall [6] a method was presented where 
hierarchically structured funcUonal programs were flattened into programs expressed 
entirely in terms of the lowest level primitives, with consequent gain m efficiency but loss 
of understandabil i ty.  This was achieved (for straight line programs only) by a technique 
of combined optimization with replacement  of  procedure calls by their bodies.  The 
implemented system had extra techmques built into it which took advantage of known 
relationsh~ps between the abstract objects and their representat ions (m this case sets and 
hsts or bit strings) to perform extra optJmizations. We now propose a new technique for 
structuring such programs and show how the new method can flatten such programs 
(which need not now be only straight line ones),  doing away with the need to build m 
representat ion dependent  optlmizations.  

The usual method of structuring data is to write primltwe functions for the higher, 
more abstract  data types m terms of the lower data types (see for example Hoare  [10]). 
We propose to remove the need to provide these and just ask for a single representat ion 
function mapping the lower data type onto the higher. We are grateful to Hoare  for 
suggesting this slmphfication to us. The advantages of this method are 

(i) Less work is involved for the programmer .  
0i) The division between abstract  object  and representatzon ~s much cleaner and 

more natural.  All  abstract programs are written entirely m terms of abstract  primitives. 
The representat ion relationship was implicit in the earl ier  method but was never made 
clear even to the programmer  himself. 

0ii) Resulting programs are much more modular  and easier to modify If a user wants 
to add a new representat ion all he has to do is to add one new representauon function, 
not rewrite a number  of functions. 

We still have the problem of rewriting the abstract  programs in terms of the lower 
primitives. We show how our method accomplishes this by means of another simple 
example,  which we hope also clarifies this method of structuring programs.  

Example 1. Twisting a tree. Suppose someone wishes to write programs to manipu- 
late trees labeled with atoms at their nodes. He can define labeled trees inductively, 
using constructors mltree and ltree. 

niltree E labeled-trees 
ltree: atoms × labeled-trees × labeled-trees ~ labeled-trees 

(That is, hree is a three-argument  funcuon taking an atom and two labeled trees and 
producing a labeled tree ) 

Assuming a LisP-like machine on which binary trees are available as a basic data 
structure with constructors nil and parr, 

nil E binary-trees 
atoms ~ binary-trees 
pair: bmary-trees × binary-trees ~ binary-trees 

The programmer  could choose to represent  the labeled trees using for each node a 
binary tree consisting of first the atom and second another binary tree consisting of the 
left and right subtrees. For  example,  parr(A, pair(ml, pair(B, pair(ml, nil)))) represents 
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ltree(A, ndtree, ltree(B, mltree, ntltree)). To do this he would simply define the representa- 
tion function 

R: bmary-trees ~ labeled-trees 
R(ml) ~ niltree 
R(patr(a, pau(pl ,  p2))) ~ ltree(a, R(pl) ,  R(p2)) 

The user can now write labeled tree manipulating functions entirely m terms of the 
labeled tree primitives. A very simple one is 

twist: labeled-trees ~ labeled-trees 
twist(niltree) ~ mltree 
twist(ltree(a, tl, t2)) ~ hree(a, twist(t2), twzst(tl)) 

We now want to produce TWIST. bmary-trees --~ binary-trees which simulates this on 
concrete data. Our method requires availability of a codmg functton C, reverse to the 
representation function R, such that R(C(t)) = t We have some ideas on how to produce 
such inverses automatically, but they are tentative and we omtt them here. In this case C 
is 

C: labeled-trees ~ bmary-trees 
C(ntltree) ~ nil 
C(ltree(a, t l ,  t2)) ~ parr(a, patr(C(tl), C(t2))) 

We want TWIST(p) = C(twist(R(p))). Thus 

labeled- twtst ABSTRACT trees ) 

(representaUon) (coding) 

CONCRETE binary- TWIST 
trees ), 

But this is not at all a usable definition since it uses twtst, 
implemented. Let us massage it a little. 

TWIST(ml) ~ C(twist(R(ml))) mstanuate 
ntl unfold 

TwiST(pair(a, pair(p l, p2))) 
C(twist(R(patr(a, pair(p 1, p2))))) instantiate 

© pair(a,patr(C(twist(R(p2))), C(twtst{R(pl))))) unfold 
parr(a, parr(TWIST(p2), TWIST(p 1))) fold 

This gives a recursive definition of TWIST in terms of the available concrete primitives 
nd and parr. 

Example 2. Treesort. Now consider the Treesort algorithm of Floyd [8]. This is a 
sorting algorithm using arrays to represent trees. The algorithm makes repeated calls to a 
procedure siftup, which takes an arbitrary tree and moves its root element along some 
branch as long as it is smaller than one of ItS successor elements. We show here how a 
version of this algorithm acting on concrete data (arrays) can be obtained systematically 
from one acting on abstract data (labeled trees). The abstract labeled trees can be 
represented concretely by an array A of atoms, where the successor nodes of A(n) are 
A(2n) and A(2n + 1). For example, the tree 

b J a ~ c  

d/~e f/~g / \  / 

labeled- ABSTRACT trees 

1 
binary-  CONCRETE 

t r e e s  

R, and C, which are not 
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is represented by the array A :  

1 2 3 4 5 6 7 8 9  

A(i)  a b c d e f g h i 

Now we have to deal with subtrees such as 

t l 

10 

1 

and these will be represented by parnal arrays such as A ' :  

z 2 4 5  8 9 1 0  

A'( t )  b d e h i 1 

We need to form a notat ion for such partial  arrays by selecting out certain indices from 
some other  array. Let k be the size of the original tree; for simplicity we keep it fixed 
throughout.  Now we define n 1', for any n >- 1, to be the set of  indices corresponding to 
the subtree rooted at n;  thus 

n'~ ~ O  l fn  > k  
{n} t3 (2n)1' U (2n + 1)1' otherwise.  

In the example,  21" = {2,4,5,8,9,10}, the indices of the left-hand subtree. 
We call the set of part ial  arrays with subscripts m n ~ arrays.; for example A '  above is 

m arraysz. We call the set of trees which they represent  trees.. To be precise, arrays, is 
the set of functions (n "~ ~ atoms), and trees, is defined inductively by trees, is {niltree} if 
n > k,  and otherwise by trees, is the set of all trees of the form ltree(a, t l ,  t2) where a is an 
atom, t l  is m trees2, and t2 in trees2.+1. 

An tmportant  operatmn corresponding to taking a subtree of a tree will be taking a 
subarray of an array. I fA  is in arrays, and m Is in n 1", we write Am for the restriction of A 
to indices in m'{'. So, for example,  A '  in the above example could be written A z, being 
the p a m a l  subarray rooted at 2. In general ,  if A is m arrays., then As .  in arraysz, and 
A2.+1 in arraysz.+~ represent  the left and right subtrees of the tree represented by A .  
Clearly ff m E n ~ , An(m) = A (m ) and ( A  n)m = Am. 

NOW for each pair of domains (arraysn, trees.) we must define a representat ion function 
r .  and a coding function c. inverse to it Thus 

r.: arrays. ~ trees,, (representat ion,  concrete ,to abstract) 
c.: trees. ~ arrays. (coding, abstract to concrete)  

They are defined recursively by 

r.(A ) ~ niltree If n > k Of n > k then n "  = Q 
and arrays, contains only the 
empty array 2~) 

otherwise r.(A) ~ ltree(A(n), r2.(Az.), r2.+l(A2n+O) 
cn(mttree) ~ 
c.(ltree(a, t l ,  t2)) ~ {(n, a)} t_J cz.(tl)  t..I c2.+j(t2) 

These have the desired property that if A ~ arrays., then c.(r.(A)) = A .  
We will not do the whole of the treesort  algori thm, but concentrate on the main 

procedure,  which is called "siflup," by Floyd.  (Since we write our trees with their roots 
up in the air, we should call it "siftdown", we just use "stfl.") It produces a rearranged 
tree with the top e lement  moved down a branch so far as possible over e lements  which 
are larger than it. (The idea of the algorithm is to get a tree with each branch sorted in 
order  and to maintain this state of affairs when new elements are added,  all of this using 
s,~.) 
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There are a number of cases in the definition ofsi)2,  depending on the relative sizes of 
the top three elements of the tree. Since they are all similar, we discuss just one case. 

The abstract function is 

sift: labeled-trees ~ labeled-trees 

In the case a l  < a2 and a2 _> a3 it is defined by 

sif t(l tree(al,  ltree(a2, t l l ,  t12), 
ltree(a3, t21, t22))) 

ltree(a2, soft( l tree(al ,  t l l ,  t12)), 
ltree(a3, t21, t22)) 

We now define a function S1FTn on concrete data: for each n -> 1, 

SIFTn: arraysn --~ arraysn 
SIFTn(A ) ~ cn(sift(r~(A ))) 

This cannot be run as it stands since it uses the abstract sift,  we wish to transform It into 
one which can be run. 

We consider the typical case A (n) < A (2n) and A (2n) -> A (2n + 1) (assuming that 2n + 
1 -< k so that these elements exist). 

S I F T . ( A )  ~ {(n, A(2n))} 
U c2.(stfi(ltree(A (n), ra.(A4.), r4.+l(A4.+0))) 
U c2n+,(rzn+a(A2n+,)) 

by unfolding with the defimtions of rn, stfl ,  and Cn. 

(Note that we view partial arrays as functions, i.e. sets of index value pairs, and use 
umon to combine them, {(n, A(2n))} is the partial array with just one index n.)  

First cm(rm(B)) = B,  for any m and B E arrays,. ,  so the last term is just A2.+1. 
Now to do a fold on S I F T  we would like the second term to be of the form SIFTm(A ' )  , 

for some m and some A ' .  Since It is m arrays2., m = 2n; now SIFT2 . (A ' )  is 

e2n(sift(rzn(A'))), Le. c2.(sifi(ltree(A'(2n), r4n(A~.), r4.+,(A~.+l)))), 

so comparing this with the second term, 

A ' (2n )  = A(n ) ,  A;,~ = A4n , A~n+l = A4.+l. 

That ~s, A '  is hke A2. except that its value for index 2n is A ( n )  instead of A(2n). This 
suggests that we introduce a substitution operation on arrays such that B[i/a] is an array 
like B but with value a for its tth element. Formally, B[t l /a l ,  • • • , i . / a . ]  is an array B' 
such that B'qO = al,  • • • , B'( t . )  = a .  and otherwise B'q )  = B(1). Now we can p u t A '  = 
a2 . [2n /A(n)] .  

This digression motivates us to rewrite S1FT. (A)  as 

S1FT. (A)  ~ {(n, A(2n))} 
U Cz.(sifi(ltree(A'(2n). r4.(A;.), r4.+,(A;.+,)))) 
I.J A2n+l 

w h e r e  A'  = A2.[2n /A(n)]  
© {(n, A(2n))} 

U c2n(sifi(r2n(A'))) 
k.J A2n+l 

w h e r e  A '  = A2.[2n/A(n)] 

{(n, A (2n))} 
U SIFT2. (A ' )  
L.I A2n+1 

w h e r e  A '  = Az . [2 n /A (n ) ]  

(eureka) 

by folding with the definition of r 

by folding with the definition of SIFT,  
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This is the required recursive defimtion for SIFT. It operates  on part ial  arrays. The 
substitution operat ion corresponds to an assignment to one e lement  of the array.  

The key step above,  marked with "eureka , "  involves some tricky forethought and 
looks hard to mechanize.  However  it is a preparat ion for folding just as is the use of 
associativity in other  examples;  one might imagine a matching algorithm which has built 
into it various propert ies  of substitution and uses them to force a fold. We have run the 
above transformations on our system, but only by supplying the key substitutions as 
rewrite lemmas.  The intuitions behind these manipulations are less complex than our 
rather  barbarous  notat ion would suggest, and this is an open area for research.  

But we are still not finished because Floyd 's  sift procedure is i terative,  and it is 
important  that one can work iteratively on a single array without copying. The stout- 
hear ted reader  may follow the further transformations required;  others may skip to 
Section 9. 

First we notice that we can use the propert ies  of substitution to express the three terms 
in the above definition for SIFT. using just one array A": 

SIFT,(A) ~ {(n, A"(n))} O SIFT2,(A~n) 0 A~,+i 
where A" = a[2n/A(n), n/A(2n)] (eureka) 

(This makes sense because it means "Exchange the nth and (2n)-th elements of A and 
SIFT the subarray rooted at 2n.")  

Notice that part  of A" is being replaced by a SIFTed version. This suggests a general 
operat ion of  replacing the subarray of A rooted at m by B, and we define, for A in 
arrays, and B in arraysm where m ~ n ~', 

A +m B = (.4 - Am) tO B (eureka). 

This enjoys "associatlvity," which we know to be helpful in getting l terative programs.  

A +z (B +, ,  C) = (A +l  B) +m C (lemma). 

This + operat ion enables us to rewrite SIFT, simply as 

SIFTn(A) ~ A" +2n SIFTzn(A~n) 
where A" = A[2n/A(n), n/A(2n)] 

Now we can analyze the computat ion of SIFTn by defining a subsidiary function to 
describe how it depends on A", 

In(m, B) ~ B +m SIFTm(Bm) definition (eureka) 

This produces an array like B, but with the subarray starting at m sifted B must be in 
arraysn. (This enables us to write 

SIFT,(A) ¢ I,(2n, A") 
where A" = as above fold.) 

Can we transform this definition o f / t o  make it i terative? Yes, if we use associativity of 
+ in the famihar way and do some rather ticklish rewriting of expressions revolving + 
and [ ]. 

l,(m, B) ~ B +m(B" +2m SIFT2m(B~m)) 
where B" = Bm[2m/Bm(m), m/Bm(2m)] 

by unfolding with our last recursive definition of SIFT 
(B + m B") -]-2m SIFT~m(B'2m) 
w h e r e  B" = B,.[Z,n/B,.(m), m/Bm(2m)] 

by assocmtlvity of + 
© B" +2,, SIFT~m(B~'m) 

where B" = B[2m/B(m), m/B(2m)] 
by various toggling propert ies  of + ,  [ ], and subarray formation (eureka)  

/.(2m, B") 
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where B" = B[2m/B(m), m/B(2m)] 
by folding with definition of In. 

This definition is i teratwe and quite simple. The road to it was hard and l i t tered with 
eureka's. We conclude that the basic transformation method works but runs up against 
the obscurity which usually bedevils reasoning about data-structure overwriting. We 
hope to stimulate further research on such reasoning. 

9. Conclustons and Future Work 
We have tried to abstract some general method from the particular tactics incorporated 
in our previous improvement  system (Darlington [5], Darhngton and Burstall [6]). Work 
is continuing, and on the theoretical side the following problems are open at the moment  
(January 1976). 

(i) How wide a class of program improvements  falls within the scope of our transfor- 
mations? Can one obtain any formal characterization of this class? 

(il) What  are necessary and sufficient conditions that guarantee that our transforma- 
tions produce an improvement? Can we indeed make a general argument on the basis of 
the one for Fibonacci in Appen&x 2? 

On the practical side, work is continuing with the implemented system to investigate 
the behavior of different strategies. We would like to mechanize the generalization of old 
defimtions to new ones, not just as outl ined in Section 5 but also where the new 
defimtion needs an extra parameter ,  as in Section 6, or where totally new definitions are 
needed,  as m Appendix  1. We would also hke to look at the problem involved in 
structuring the optimization of large programs.  

The system can be simply extended to achieve the synthesis of algorithms from their 
implicit (nonexecutable)  defimtlons. Darhngton [7] gives simple examples of this. 
Recently the same author has used this techmque to investigate the structure of classes of 
algorithms by at tempting to synthesize all algorithms in a class from a common high level 
deflmtion. The first class to be investigated was the sorting algorithms, and so far six 
well-known sorting algorithms have been synthesized (manually) from one high level 
definition. 

We should mention relevant work by other people.  Courcelle and Vudlemin [4] 
provide a mathematically rigorous t reatment  of an inference system for a simple recur- 
slve language. Manna and Waldinger  [12], m their work on program synthesis, rode- 
pendently develop a rule similar to our folding rule, although their presentat ion of the 
underlying ideas is rather different. In a more general way our work Is akin to work by 
Gerhar t  [9] on transformations,  to the Harvard work on program mampulat ion (Chea- 
tham and Wegbre~t [3]), and to the large l i terature on optimization techniques m 
compilers.  

Appendix l.  Testing Trees for Equahty of Frontiers 

This is an example where the obvious defimtion may compute values which are never 
needed,  a problem proposed originally to illustrate the usefulness of coroutlnes.  We have 
no coroutine facility in our recursion equation language, but we can achieve a similar 
economy in computat ion,  although in a rather less general way. 

The problem is to test whether two given binary trees have the same frontier ,  where 
the frontier of a tree is the list of ~ts tips. Thus m Figure 1 the trees t l  and t2 are equal m 
this sense, but t l  and t3 are not. A natural approach is to define the desired testing 
function eqtree m terms of a function frontier which produces a list from a tree,  getting (A 
B C D E F)  for t l  and (A B C D E F)  for t2, and also a function eqlist to test whether 
these two lists are equal.  But then for t l  and t3 we foolishly compute the whole of (A B C 
D E F)  and (G B C D E F)  before noticing that they &sagree in the very first e lement .  
We will try to obtain an improvement  which avoids this. 

We need a data type atom, from which we derive a data type tree,  using constructor 
functions ttp to in&care a tip and tree to combine two subtrees 
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frontler(t l)  = (A B C D E F) 
frontter(t2) = (A B C D E F) 
frontter(t3) = (G B C D E F) 
eqtree(tl ,  t2) 
eqtree(tl ,  t3) 

R M. BURSTALL AND J. DARLINGTON 

B C / / / ~  F G B E F 

/ \  
D E 

= eqhst(frontter(tl) ,  frontmr(t2)) = true 
= eqlist(frontter(tl),  frontier(t3)) = false 

FIG 1 Trees  

ttp : atoms ~ trees 
tree: trees × trees --> trees 

We also need lists of atoms and of trees, so for any type alpha let 

nil ~ alpha-hsts 
cons" alphas x alpha-lists ~ alpha-hsts 

We again write x :: X for cons(x, X). 
We make a habit of specifying the type of each new function, using the usual notation 

f:  S --~ T, although this is outside our formahsm. 
We first define some auxlhary functions, then the mare function eqtree (Figure 1) 

which tests trees for equahty of their frontiers. 

concat: alpha-lists × alpha-lists ~ alpha-hsts (concatenation, alpha IS any type) 

We again write X 0 Y for concat(X, Y) 

1. nil () Y ~ Y 
2. (x : :X)  0 Y ~ x  : : ( X O Y )  

eqhst: atom-lists × atom-lists --> truth values (list equality) 
3. eqhst(ntl, nil) ~ true 
4. eqlist(nil, y :: Y) ~ false 
5. eqlist(x :: X,  nil) ~ false 
6. eqhst(x :: X, y :: Y ) ~  eq(x, y) and eqlist(X, Y) 

where eq tests equahty of atoms 
fronUer: trees -~ atom-hsts (list of atoms at tips of tree) 

7. frontier(tip(a)) ~ a :: nil 
8. frontier (tree ( t l ,  t2)) ~ frontier(t1) () frontier(t2) 

eqtree: trees × trees --~ truth values (tree equality, same tip sequence) 
9. eqtree(s, t) ~ eqlist (frontier (s), frontier (t)) 

If we now try to improve eqtree by the methods used above, we have no success. To 
overcome this we introduce a more general function, E Q T R E E L I S T  (see Figure 2) 
which tests whether two lists o f  trees have the same tip sequence. (We use upper case for 
varmbles taking hsts of trees as values and for functions taking lists of trees as arguments, 
analogous to but distinct from the variables and functions in lower case.) The motwe 
here is that as we decompose a tree the current state is some cross section across the tree, 
but this is just a list of subtrees In the coroutine method these subtrees would be there 
behind the scenes, associated with coroutine activations. We have to make them vulgarly 
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G B E F 

FRONTIERLIST(T1) = ((A B) (C) (D) (E ~) 
FRONTIER(T1) = flatten (FRONTIERLIST(T1)) 

= ( A B C O E F ~  
FRONTIER(T2) = (A B C D E F) 
EQTREEL1ST(T1, T2) = eqhst(FRONTIER(T1), FRONTIER(T2)) 

= true 

FiG 2 Tree hsts 

explicit .  Again  we need  an auxdiary funct ion F R O N T I E R  to give the hst of  a toms at the 
tips of  the whole hst of  t rees ;  thus FRONTIER:  tree-hsts ~ atom-hsts (see Figure  2).  

10. FRONTIER(T)  ~ f la t ten(FRONTIERLIST(T))  (eureka)  

where  F R O N T I E R L I S T  takes  a list of  t rees  to the hst of  their  indwidual  f ront iers  
FRONTIERLIST:  tree-lists ~ atom-hst-lists 

11. FRONTIERLIST(ni l )  ~ ntl 
12. FRONTIERLIST( t  :: T ) ~  frontier(t) :: FRONTIERLIST(T)  

and flatten takes  this hst of lists to a hst of  a toms,  by conca tena t ing  Its e lements  
flatten: atom-hst-lists ~ atom-hsts 

13. flatten(nil) ~ nd 
14. flatten(l :: L) ~ 1 0  flatten(L) 

E Q T R E E L I S T :  tree-lists × tree-lists ~ truth values (equal i ty  for tree lists) 
15. E Q T R E E L I S T ( S ,  T) ~ eqhst(FRONTIER(S),  FRONTIER(T) )  

Now we can use t ransformat ions  to redef ine  eqtree m terms of  E Q T R E E L I S T  since a 
t ree  is a singleton hst of  t rees .  We need  a i emma ,  l 0 nd = I. 

16. eqtree(s, t) ~ eqlist(frontier(s), frontier(t)) r epea t  of  9 
eqlist(frontier(s) 0 nil,frontier(t) 0 nd) i emma  about  0 (eureka)  
EQTR E E LIST( s  :: nil, t :: nil) fold 13, 14, 11, 12, 10, 15 

N o w  let us improve  E Q T R E E L I S T .  It is most  clear  if we start  on F R O N T I E R ,  
t ransforming each equa t ion .  

17. FRONTIER(nd)  ~ f latten(FRONTIERLIST(nil))  mstant la te  10 
ntl unfold 11 and 13 

18. FRONTIER(ttp(a) ": T) ~ flatten(FRONTIERL1ST(tip(a) :. T)) 
instant iate  10 

(a :: nil) O f la t ten(FRONTIERLIST(T))  
unfold 12, 7, 14 

(a :: nil) 0 F R O N T I E R ( T )  fold 10 
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19. FRONTIER(tree(t1, t2) :: T)~flatten(FRONTIERLIST(tree(tl, t2) :" T)) 
instantmte 10 

(fronuer(t l ) O frontier(t2)) 
0 flatten(FRONTIERLIST(T)) 

unfold 12, 8, 14 
~ frontier(tl) () (frontier(t2) 

0 flatten (FRONTIERLIST(T))) 
associativlty of 0 

FRONTIER(tl :: (t2 :: T)) 
fold 14, 12, 14, 12, 10 

(Notice that the use of associatiwty here requires some insight since an alternative step is 
to fold with 10 immediately,  which does not  give the result we want ) 

Finally we use this new definition of FRONTIER to improve EQTREELIST itself, 
and thus improve eqtree which uses it 

20. EQTREELIST(nil, nil) ~ true instantiate 15, unfold 17, 3 
21. EQTREELIST(ttp(a) :: S, nil) ~false mstantiate 15, unfold 18, 17, 2, 5 
22. EQTREELIST(nil, tip(b) :: T) ~ false similarly 
23. EQTREELIST(tip(a) :: S, tip(b) :: T) ~ eq(a, b) and eqlist(FRONTIER(S), 

FRONTIER(T)) 
instantmte 15, unfold 18, 2, 1, 6 

eq(a, b) and EQTREELIST(S, T) 
fold 15 

24. EQTREELIST(tree(sl, s2) :: S, T) ~ eqlist(FRONTIER(sl :: (s2 :: S)), 
FRONTIER(T)) 

mstantlate 15, unfold 19 
EQTREELIST(sl :: (s2 :: S), T) 

fold 15 
25. EQTREEL1ST(S, tree(t1, t2) :: T) © EQTREELIST(S, tl :: (t2 :: T)) 

similarly 

20-25 give a direct recursive definition of  EQTREEL1ST with no auxiliary functions. 
This reduces each tree from the left-hand end as far as necessary, as shown m the 
example in Figure 3 24 and 25 are used in any order  (nondetermimstically)  until the first 
tip m each treellst is reached; then the tips are compared  using 23, which stops the whole 
process immediately if they are not equal.  20-22 cope with the nd cases. Execution of 
EQTREELIST is radically different from that using the original deflniuon 9, which built  
up the concept in a well-structured but computat ionally inefficient way involving unnec- 
essary computat ion of large intermediate lists. 

Appendix 2. Improving the Ftbonaccl Functton 
To examine whether a sequence of transformations by our  rules improves the efficiency 
of the program,  let us try to prove that this is the case for the Fibonaccl example .  This 
should throw light on the principles involved without requiring an elaborate  and imper- 
spicuous formal apparatus 

First we rewrite the transformations,  giving a subscript to distingmsh each new 
function symbol as we define it, since these variants,  although they may not differ m 
meaning, certainly differ in efficiency. 

We concentrate on the auxiliary function g, which is defined m terms of the original 
Fibonaccl function f .  

g(x) ~ ~f(x + 1), f(x)) definition 
g~(O) ~ i f ( l ) ,  f(O)) mstantiate 
gz(O) ~ (1, 1) unfold 
g3(x + 1) ~ (f(x + 1 + 1) , f (x  + 1)) mstantiate 
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A D 

/ \  
A B c D 
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c D 

T 2 ( ~ A  ) 

c D 
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D Tll( ~ ~ ) 
c T2,(c 

eqtree(t I, t2) 

T2,'( 

c D 

= EQTREELIST(T1, T2) = EQTREELIST(TI', T2) 
= EQTREELIST(TI", T2) = EQTREELIST(TI", T2') 
= eq(A, A) and EQTREELIST(Tlt,  T21) 
= EQTREELIST(Tll,  T21) = EQTREELIST(Tll,  T21') 
= eq(B, G) and . = false 

Fm 3 Using improved definmon of eqtree 

g4(x + 1) ~ ?f(x + 1) + f (x) ,  f ( x  + 1)) unfold  
gs(x + 1) ~ (u + v, u)  where (u, v) = (f(x + 1), f ( x ) )  abstract ion 
g6(x + 1) ~ (u + v, u) where (u, v) = g(x) folding 
gT,z(x + 1) ~ (u + v, u) where (u, v) = gT.2(x) folding 

Notice that folding is done in two steps, first replacing an instance of the r ight-hand 
side of the original g equa t ion  by the lef t-hand side, which still leaves ge ul t imately 
defined m terms of f ,  then replacing this by a recursion.  We call the new funct ion g7,2 
because we wish to imply that the equa t ion  for g2 is to be used when x = 0. 

Let us now write ~b[n] to denote  the n u m b e r  of ar i thmetic  opera t ions  needed  to 
compute  the value of the function symbol  ~,  using its equat ions ,  for the n u m b e r  n as 
a rgument .  For  Fibonaccl  this is the n u m b e r  of addit ions (ignoring + 1 ,  successor).  

Now ins tant la t lon  and unfolding do not  affect the n u m b e r  of operat ions ,  so 

g2[0] = g~[0] = g[0] and g4[x + l ]  = g3[x + 1] = g[x + 1]. 

By a trivial induct ion  f ix  + 1] >-- 1 lfx >-- 1, so gs[x + 1] < g4[x + 1] lfx >-- 1 (that is, where-  
abstract ion makes an improvement ) .  

Clearly the first stage of folding does not  affect the n u m b e r  of operat ions ,  so g6[x + 1] 
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= gs[x + 1] < g[x + 1] i fx  --> 1. We  wish to show f rom this thatgr.2[x + 1] < g[x + 1] i fx  
>- 1. But  for  this it is easy to show by induct ion  that  for  all x -> 0, 

gT,~[x] < g[x] i f  x -> 2, 
-<g[x] i f x  = 0 0 r x  = 1. 

Base. I m m e d i a t e  i f x  = 0 0 r x  = 1. 
Step. S u p p o s e x  _> 1 andgr,~[x]  -<g [x]; we need  to show thatgT,z[x + 1] < g[x + 1]. 

But  the equat ion for g7,z ts just like that for g6 with gT,~(x) for g(x). By our  hypothests that  
gr,2[x] -< g[x] we have gT,z[x + 1] -< gG[x + 1]. But we a l ready  have  gG[x + 1] < g[x + 1], so 
gr.2[x + 1] < g[x + 1]. 

To  summar ize ,  we have p roved  direct ly  that  where-abs t rac t ion  makes  an i m p r o v e m e n t  
and that  folding preserves  it (in fact it amplif ies  it by doing it at each level  of  the 
recurs ion)  

In genera l  one  can see that  the improvemen t s  are in t roduced  by where -abs t rac t ion  or  
rewri t ing l emmas ,  and also that  folding will p rese rve  any such tmprovemen t s  p rov ided  
that  the base case is no worse and that  the a rgumen t  of  the equa t ton  used m the 
subst i tut ion is lower  m some  wel l - founded  order ing  than that  of  the equa t ton  undergo ing  
the fold.  
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