
www.manaraa.com

A Transformation System for Developing Recursive Programs

R. M. BURSTALL AND JOHN DARLINGTON

Umversity of Edinburgh, Edinburgh, Scotland

ABSTRACT A system of rules for transforming programs is described, with the programs in the form of
recurslon equations An imtlally very simple, lucid, and hopefully correct program is transformed into a more
efficient one by altering the recurslon structure Illustrative examples of program transformations are given,
and a tentative implementation is described Alternative structures for programs are shown, and a possible
initial phase for an automatic or semiautomatic program mampulatlon system is indicated

KEY WORDS AND PHRASES program transformation, program manipulation, optimization, recursion

CR CATEGORIES" 3 69, 4 12, 4 22, 5 24, 5 25

1. Introduction

We presen t here a system for t ransforming programs , where the p rograms are expressed
as first o rde r recurs ion equat ions . This recursive fo rm seems well adap ted to manipula-
t ion, much more so than the usual Algol-s tyle fo rm of p rogram, and our t ransformat ion
system consists of just a few simple rules toge ther with a s trategy for applying them.
Despi te their s imphci ty, these rules produce some interes t ing changes in the programs .

The overa l l aim of our invest igat ion has been to help peop le to write correc t p rograms
which are easy to alter. To p roduce such p rograms it seems advtsable to adopt a l u o d ,
mathemat ica l , and abstract p rog ramming style. If one takes this real ly seriously, at-
t empt ing to free one ' s mind f rom cons idera t ions o f computa t iona l e f f ioency , there may
be a heavy penal ty in p rog ram running t ime; in pract ice it is of ten necessary to adopt a
more intr icate vers ion of the p rogram, sacrificing comprehens ib i l i ty for speed. The
ques t ion then arises as to how a lucid p rog ram can be t ransformed into a m o r e intr icate
but e f f i o e n t one in a systematic way, or indeed in a way which could be mechan ized .

It is perhaps surprising to not ice that even in the raref ied language o f purely recursive
p rograms there ~s a sharp contras t be tween p rograms wri t ten for maximal clarity and
those wri t ten for to lerable eff iciency. As Knu th [11] points out , one does not have to
cons ider t ranslat ion f rom an Algol-s tyle language to a machine code language as
p e r f o r m e d by opt imizing compi lers to get to grips with the issue; the contras t ~s in the
p rogram structure , part icularly in the recurs ion (or loop) s t ructure . We start with
p rograms having ex t remely simple s tructures and only la ter in t roduce the compl ica t ions
which we usually take for gran ted even in high level language programs . These complica-
tions arise by in t roducing useful in teract ions be tween what were original ly separa te parts
of the p rogram, benef i t ing by what might be cal led " e c o n o m i e s of in te rac t ion . "

We p roceed in a qmte empir tcal manne r , showing examples of var ious kinds of

Copyr ight © 1977, A s s o c i a t i o n for Computing Machinery, Inc General permission to republish, but not for

profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference IS
made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery
These ideas were first presented m our paper at the Conference on Reliable Software, Los Angeles, 1975, of
which this is a much revised and extended version
This work was supported by The Science Research Council
Authors' address Department of Artificial Intelligence, Edinburgh University, Hope Park Square-Meadow
Lane, Edinburgh EH8 9NW, Scotland

Journal of the Assooat~on for Computing Machinery, Vol 24, No 1, January 1977, pp 44-67

www.manaraa.com

A Transformation System for Developing Recurstve Programs 45

program transformation and how they can be achieved with our system. We make no
cimm for any sort of completeness of the system; it embodies only one family of program
transformations, and we have no formal delineation of this family. Nor do we have a
general method of showing that the transformations ~mprove efficiency. However, we
hope that the examples will give the reader pleasure and convince him that the system
has some power. He wdl see that the example programs become more complicated or
"intertwined" as we transform them, less hke mathematical definitions and more like
"sensible" programs. We would be grateful for any suggestions for capturing this notion
of intertwining more precisely.

The transformation rules can also be viewed as a possible initial phase of a mechanized
program transformation system In fact they arose from our efforts to understand and
systematize parts of an earlier system (Darlington [5], Darlington and Burstall [6]). That
system started by remowng recurslons in favor of iterations where possible; only then did
~t make transformations from abstract to concrete data and ehmlnate some redundant
computaOon; finally it arranged for overwriting of data structures. We now feel that as
much manipulation as possible should be performed before removing recursion. In this
we were largely influenced by Boyer and Moore's elegant and successful program for
proving facts about Lisp programs [2]

We have implemented our new rules as a semiautomatic program transformation
system which relies on guidance from the user for key steps.

In Section 2 we introduce the transformation method informally In Section 3 we
present it as a formal reference system whose sentences are sets of recurslon equations.
In Section 4 we gwe examples of its application. In Section 5 we outline a strategy for
applying these transformation rules and describe the program improvement system
which we have implemented. In Section 6 we discuss conversion to iterative form. In
Section 7 we discuss a further rule that can be added to our system In Sectmn 8 we
discuss translation of programs on abstract data to ones on concrete data In Section 9 we
list some open problems and related work. Finally, in Appendix 1 we apply our method
to a more substantial example, and in Appendix 2 we show how it is possible to prove
that the transformations do effect an improvement on a particular program.

2. An Example"

Consider the following simple example. Given a function scalar product, written ". ", on
vectors, defined by

//

x ' y = ~ x ,y , ,
1 = 1

we might wish to compute a- b + c- d. Rewriting this in recursive function form we have

dot(x, y , n) ~ i fn = 0 then 0 else dot(x, y , n - 1) + x[n]y[n] fi

and we want

f(a, b, c, d, n) ~ dot(a, b, n) + dot(c, d, n)

This ~s a clear deflmtion of f , but we do not really need two separate recursive
calculations (i.e. two independent loops) Let us try symbolically evaluating f using its
definition

f (a, b, c, d, n) ~ if n = 0 then 0 else dot(a, b, n - 1) + a[n]b[n] fi
+ if n = 0 then 0 else dot(c, d, n - 1) + c[n]d[n] fi
if n = 0 then 0 + 0 else (dot(a, b, n - 1) + a[n]b[n])

+ (dot(c, d, n - 1) + c[n]d[n]) ti
by a simple property of if • • • then

i fn = 0 then 0 else (dot(a, b, n - 1) + dot(c, d, n - 1))
+ a[n]b[n] + c[n]d[n] fi

by simple properties of + and a sly rearrangement.

www.manaraa.com

4 6 R . M . BURSTALL AND J. DARLINGTON

But dot(a, b, n - 1) + dot(c, d, n - 1) l s f (a , b, c, d, n - 1), so we write

f(a, b, c, d, n) ~ if n = 0 then 0 else f(a, b, c, d, n - 1) + a[n]b[n] + c[n]d[n] ft.
This gives us a recursive definition of f , without using dot. It does not save any

multiplications or additions (except the final one) but it combines the loop overheads and
tests. Notice how the two scalar product calculations have become intertwined. Our
(shght) economy comes from this interaction; we have lost luc,dlty by it

Thus we have first symbolically evaluated the program (we call this "unfolding") , then
rearranged it, and then introduced a recursion (we call th,s "folding").~ Let us now be
more precise about these transformation rules

3. Transformation Rules

First let us pohsh our notat ion a httle. A definition like

dot(x, y , n) ~ if n = 0 then 0 else dot(x, y , n - 1) + x[n]y[n] fi

is convenient for program execution, but for transformation purposes it seems rather
easier to rewrite ~t as

dot(x, y , O) ~ 0
dot(x, y , n + 1) ~ dot(x, y , n) + x[n + 1]y[n + 1]

This is easily translatable back into the condit ional form, given that 0 and x + 1 are
mutually exclusive and exhaustive forms for nonnegatlve numbers and that x - 1 is the
inverse of x + 1.

As another example, the Fibonacci function

f(x)~ifx = 0 o r x = l t h e n l e l s e f (x - 1) + f (x - 2) fi

becomes

f (0) ~ l , f (1) ~ 1 , f(x + 2) ~ f(x + 1) + f(x)

The concatenation function on lists

concat(x, y) ~ i f x = ml then y else cons(car(x), concat(cdr(x), y)) fi

becomes

concat(nil, z) ~ z, concat(cons(x, y), z) ~ cons(x, concat(y, z))

Reworking the scalar product example, we get

f(a, b, c, d, n) ~ d o t (a , b, n) + dot(c, d, n)
f(a, b, c, d, O) ~ dot(a, b, O) + dot(c, d, O)

©o
f (a , b , c , d , n + 1) ~ d o t (a , b, n + 1) + dot(c, d, n + 1)

~ d o t (a , b , n) + a[n + 1]b[n + 1] + dot (c ,d ,n) + c[n + 1]d[n + 1]
~ d o t (a , b, n) + dot(c, d, n) +a[n + 1]b[n + 1] +c [n + 1]din + 1]
~ f (a , b, c, d, n) + a[n + 1]b[n + 1] + c[n + 1]d[n + 1]

We can now develop the method as a formal inference system whose sentences are
recurslon equations We omit definitions of well-known notions like instance and assume
the usual call-by-name semantics of recursion equations.

Prehmmarles. We need the following:
Primitive function - a set of pnmltwe function symbols k, l and c, d , . . . with zero

or more arguments; the subset c, d , . . . of pr,mlttve symbols are the constructor function
symbols. (One of the primitive functions can be the condit ional.) Examples of construc-
tor functions would be cons and successor, which ~s w r i t t e n . . . + 1 above

The folding idea is also used by Manna and Waldlnger [12] m their program synthesis work They developed
it independent ly at about the same t ime as we d,d

www.manaraa.com

A Transformation System for Developing Recurstve Programs 47

Parameter- a set x, y of parameter variables.
Recursive function - a set f , g, . . . of recursive function symbols.
Expression-an expression budt in the usual way out of primitive function symbols,

parameter variables, and recurslve function symbols. We allow the w h e r e construc-
tion E w h e r e (u, • • • , w) = F or E where u = F, E and F being expressions and u,
• • • , w being taken from a set of local variables (for example u + u 2 where u = a + b) .

Left-hand expresston-a left-hand expression is of the form f(el, "'" , e,), n -> O,
where el, " ' " , en are expressions involving only parameter variables and constructor
function symbols (disallowing where).

Rtght-hand expression-a right-hand expression is an expression.
We use E, F, G, possibly with primes or subscripts, as metasymbols to denote

expressions.
Recursion equation-a recursion equation consists of a left-hand expression and a

right-hand expression, written E ~ F.
Examples. f(c) ~ k. f(d(x, y)) ~ l(u, u) where u = m(x, y).
We have the usual notion of substitution and of one expression being an instance of

another.
Inference rules for transforming recurston equattons. Given a set of recursion equa-

tions, we may add to the set using the following Inference rules, all except folding being
rather obvious. We illustrate the rules by reference to the above example.

(i) Definition. Introduce a new recursion equation whose left-hand expression is not
an instance of the left-hand expression of any previous equation. For example,

f(a, b, c, d, n) ~ dot(a, b, n) + dot(c, d, n).

(U) Instantiatton. Introduce a substitution instance of an existing equation. For
example, instantlate

f(a, b, c, d, n) ~ dot(a, b, n) + dot(c, d, n)

to

f(a, b, c, d, O) ~ dot(a, b, O) + dot(c, d, 0).

(nl) Unfoldmg If E ~ E ' and F ~ F ' are equations and there is some occurrence in F '
of an instance of E , replace it by the corresponding instance of E ' , obtaining F"; then add
the equation F ~ F". For example, unfolding with

dot(x, y, n + 1) (= dot(x, y, n) + x[n + 1]y[n + 1] (E (:z E ')

takes

f(a, b, c, d, n + 1) (:: dot(a, b, n + 1) + dot(c, d, n + 1) (F ~ F ')

to

f(a, b, c, d, n + 1) ~ dot(a, b, n) + a[n + 1]b[n + 1] + dot(c, d, n) + c[n + 1]d[n + 1]
(F ~ F").

(w) Folding. If E ~ E ' and F ~ F ' are equations and there is some occurrence in F ' of
an instance of E'~ replace it by the corresponding instance of E, obtaining F"; then add
the equation F ~ F". For example, folding with

f(a, b, c, d, n) ~ dot(a, b, n) + dot(c, d, n) (E ~ E')

takes

f(a, b, c, d, n + 1) (:: dot(a, b, n) + dot(c, d, n) + a[n + 1]b[n + 1] + c[n + 1]din + 1]
(F ~ F ')

to

f (a , b , c , d , n + 1) ~ f (a , b , c , d , n) + a[n + l]b[n + 1] + c[n + 1]d[n + 1] (V ~ F").

www.manaraa.com

4 8 R. M BURSTALL AND J. DARLINGTON

(v) Abstraction. We may introduce a where clause by deriving from a previous
equation E ~ E ' a new equation,

E ~ E'[ul/F~, " . . , un/Fn] where (ul, - ' . , un) = (F1, " ' " , Fn).

Abst racuon is not used in the dot example. We can see an example of its use in the
Fibonacci example in Section 4.

(v 0 Laws. We may transform an equation by using on its r ight-hand expression any
laws we have about the primitives k, l, . . (associatlwty, commutativl ty, etc.) , obtaining
a new equation For example, the commutativity of + enables us to rewrite

f(a, b, c, d, n + 1) ~ dot(a, b, n) + a[n + 1]b[n + 1] + dot(c, d, n) + c[n + l]d[n + l]

a s

f(a, b, c, d, n + 1) ~ dot(a, b, n) + dot(c, d, n) + a[n + 1]b[n + 1] + c [n + l ~ [n + 1].

Each new equation obtained by these rules may be taken as a definition of the function
appearing on the left provided we take a disjoint and exhaustive subset of them. (The
notions of dlslolntness and exhaustiveness depend on the data domain; we do not
at tempt an expl io t definition but they should be clear enough for integers, hsts, etc.)

We believe that these reference rules preserve correctness, although we do not have a
formal proof of this. An informal argument, for which to thank G. Plotkin, ~s that the
effect of using our rules could equally well be obtained as follows: First rewrite the
definitions, say E ~ E', F ~ F ' , . . . 0), as the corresponding equations E = E ' , F = F ' ,
• . . (n); now each of our transformation rules can be seen to correspond to a sound rule
for deducing a new equation, so use these rules to get new equations, say E1 = E'i, F~ =
F~, . . (di); then choose a subset of these (exhaustive and disjoint) , say E2 -- E~, F2 =
F~ (iv), then rewrite these as definitions E2 ~ E~, F2 ~ F~, . . . (v). Now the
functions defined by (v) satisfy eqs. 0v) and are the least such functions. But the
functions defined by 0) satisfy eqs. (u) and hence eqs. (rio and hence eqs. 0v) So the
functions defined by (v) are less than or equal to the ones defined by 0)- (f i s less than or
equal to g if f (x) = g (x) whenever f (x) is defined) That is, we retain correctness, but we
might lose termmahon unless we impose some extra restriction

As to whether our t ransformahons improve the eff ioency of programs, we do not
know sufficient conditions for this in general . However , in Appendix 2 we show that they
do improve the F ibonaco program (and so a for t lon preserve its termination). The
reasoning employed suggests a general argument that

(l) improvements can be introduced by rewriting lemmas and by abstraction;
(ii) mstantlation and unfolding leave eff loency unchanged;

(Ul) folding at least preserves efficiency provided that the argument of the equation
used in the substitution is lower Jn some well-founded ordering than that of the equation
being transformed.

Strategy. A simple strategy for applying these rules turns out to be quite powerful, and
It wdl be used in the examples which follow. Thus.

(a) Make any necessary definmons.
(b) Instantiate.
(c) For each mstantiation unfold repeatedly. At each stage of unfolding:

(d) Try to apply laws and where-abstraction.
(e) Fold repeatedly•

Stages (a) and (b) require some invention from the user, (d) reqmres his d~scretlon,
but (c) and (e), unfolding and folding, are routine symbol manipulation.

We discuss strategy and a semmutomatlc lmplementaUon in Section 5.

4. Examples o f Use o f the Transformation System

Example 1. Fibonaco. Let us look at a case where we can make a substantml gain in
efficiency by introducing a new recurslve definition which intertwines what were origl-

www.manaraa.com

A Transformation System for Developing Recurstve Programs 49

nally separate computations. In this case we avoid computing certain values twice.
We use "eureka" to draw attention to certain unobvious steps in the transformations.

The reader may feel that certain other steps deserve "eureka ." In Section 5, however,
we describe a program improving system based on the transformation rules and show
how it can automatically achieve these steps. The steps marked here indicate the help the
user has to give the system at present.

We take the definition of F~bonacci made in Section 3 as our starting point. (We
regard x + 1 as an abbreviat ion for successor(x) and pairing as a primitive function
written (.).)

1. f(0) 'x:::: 1 given
2. f(1) ~ 1 given
3. f(x + 2) ~ f(x + 1) + f(x) given
4. g(x) ~ (f(x + 1), f(x)) defimtion (eureka)
5. g(O) © ~f(1), f(O)) instantmtion

(1, 1) unfolding with 1 and 2
6. g(x + 1) ~ ~(x + 2), f(x + 1)) instantiate 4

(f(x + 1) + fix), f(x + 1)) unfold with 3
(u + v, u) w h e r e (u, v) = (f(x + 1),f(x)) abstract
(u + v, u) where (u, v) = g(x) fold with 4

7. f(x + 2) ~ u + v where (u, v) = (f(x + 1),f(x)) abs t r ac t3
u + v where (u, v) = g(x) fold with 4

f(o)
f(~)
f(x +2)
g(O)
g(x + 1)

Now notice the pattern of applying the inference rules. 4 comes by insplrahon,
although motwated somewhat by 3. 5 and 6 are the obvious instantiat~ons of 4; for each
of them we first unfold as far as possible, then for 6, abstract m order to fold. 7 is an
unobvlous abstrachon of 3 made in order to fold.

Thus the new definmon of Flbonaccl is:

© 1

u + v w h e r e (u , v) = g(x)
(1, 1)
(u + v, u) w h e r e (u, v) = g(x)

This computes the result in linear time in x instead of exponentmi.
Example 2. The scalar product example combined two independent loops into one;

the F~bonacci example transformed a binary recursion into a loop. Our next example
combines two binary recurs~ons into one. We assume a tree ~s either ttp of an atom or tree
of two trees, where tip and tree are constructor functions. We are given f , which
computes the sum of the tips, and g, which computes their product , and we wish to
compute both of them at once.

1. f(tip(x)) ~ x
2. f(tree(x,y)) ~ f (x) + f(y)
3. g(tip(x)) ~ x
4. g(tree(x, y)) ~ g(x)*g(y)
5. h(x) ~ ~f(x), g(x))
6. h(up(x)) ~ (f(ttp(x)), g(tip(x)))

¢ (x, x)
7. h(tree(x, y)) ~ dr(tree(x, y)), g(tree(x, y))).

q(x) + f(y), g(x)*g(y))
(u + v, w,t) w h e r e (u, w, v, t) = ~f(x), g(x),f(y),

g(y)).
(u + v, w,t) w h e r e ((u, w), (v, t)) = (h(x), h~v)).

Thus h computes both functions at once.
Example 3. Table of factorials.

may define naively:

given
given
given
given
given
mstantiat ion
unfolding 1, 3
mstantmtion
unfolding 2, 4
abstraction

folding with 5

Suppose we want to make a table of factorials. We

www.manaraa.com

5 0 R. M. BURSTALL AND J. DARLINGTON

1. fact(O) ~ 1
2. fact(n + 1) ~ (n + 1),fact(n)
3. factlist(O) ~ nil
4. factlist(n + 1) ~ cons(fact(n +" 1), facthst(n))

Thusfacdist(4) is (24, 6, 2, 1), but each of these is computed afresh. Let us improve the
definition of factlist:

5. g(n) ~(fact(n + 1),factlist(n)}
6 g(0) ~ (fact(l), facdtst(O))

(1, nil)

defimtion (eureka)
instantiate 5
unfold 2, 4, 1 and use

law about *
instanuate 5
unfold 2, 4

7. g(n + 1) ~ ~fact(n + 2), facthst(n + 1))
((n + 2)*fact(n + 1), cons(fact(n + 1),

factlist(n)))
((n + 2)*u, cons(u, v)) where (u, v} = abstract

~fact(n + 1), facthst(n))
((n + 2)*u, cons(u, v)) where (u, v) = fold with 5

g(n)
8. facthst(n + 1) ~ cons(u, v) where (u, v) = (fact(n + 1), abstract 4

factlist(n))
~cons(u, v) where (u, v) = g(n) fold with 5

This new definition of factlist computes fact(n + 1) from fact(n), cutting down the
computaUon from Ume n 2 to time n. Notice, however, that to do factlist in ascending
order is not easy with our techmque and seems to require an extension of the rules. We
are currently investigating this problem.

Example 4. Testing trees for equality of frontiers. Another example of a more
substantial nature ~s a program to test whether two binary trees have the same frontier,
that is, the same sequence of atoms at their tips. An obvious definmon revolves first
computing the frontier list for each and then comparing these two lists element by
element. The comparison can stop as soon as two differing elements in these hsts are
detected, but by that time we would have already computed the whole fronUer lists, quite
unnecessarily. Because the two trees may differ m shape, it ~s not easy to compare the
two frontwrs element by element as they are generated. Indeed this was proposed as a
problem to illustrate the virtues of coroutines. However, our transformation system can
produce a satisfactory recurswe program provided the user defines a generalization of
the problem, namely comparing the frontiers of two lists of trees instead of two single
trees The formal defimtion of the problem and the details of the transformations
required are quite long, so we have relegated them to Appendix 1.

5. Strategies for Applying the Transformatton Rules, and Implementation o f a Program
Improving System

Instead of just having a set of transformation rules which can be freely applied tn all
possible ways, we would like a more algorithmic system, avoiding search as far as
possible. We are experimenting with strategies for applying the rules such as the strategy
described briefly above Some observations seem helpful.

(i) Almost all the optimizing transformations consist of a sequence of unfoldmgs,
rewriting by lemmas, and then foldmgs.

(i 0 Use of associativity, commutatwity, and where-abstraction can usually be de-
layed until just before folding.

We use (ii) to cut down frmtless use of associatwity, commutativlty, and where-
abstraction by combining them with the folding process, using them only when they
make a fold possible. We call this combined step "forced folding" and discuss it in more
detail later.

www.manaraa.com

A Transformation System for Developmg Recurswe Programs 51

The following heuristic a lgonthm is based on these assumptions. This algorithm is
applied to each instantiation of the equation to be improved.

Algorithm 1

1. Arbi t rar i ly do an unfold or rewriting by a lemma. Arbitrari ly either repeat step 1 or
go to step 2

2. Do an arbitrary forced fold. Repeat step 2 until no more folding is possible.

The arbitrary choices are made in an exhaustive manner using backtracking. Algo-
rithm 1 ts quite laborious, a further observation gwes us a faster but less general
algorithm

(ill) In the cases where our equational method of writing programs using constructor
operat ions on the left-hand side ensures that unfolding cannot go on indefinitely, folding
can usually be delayed until all possible unfolding has been done, provided that all the
equations in the system are kept m fully unfolded form.

Algori thm 2 is based on this assumption.

Algorithm 2

0. Unfold each equation until no further unfolding is possible.

For each mstantiation of the equation to be improved:

1. Unfold until no further unfolding is possible.
2. Arbitrar i ly either do rewriting by a lemma and goto step 1 or goto step 3.
3. Do an arbitrary forced fold Repeat step 3 until no more folding is possible.

Both Algori thms 1 and 2 succeed for all the examples given here with the exception of
part of Treesort (Section 8).

A PROGRAM IMVROVIN~ SYSTEM. We have implemented an expenmenta l heuristic
program improving system based on the transformation rules and Algori thms 1 and 2.
As we have mentioned, an earlier program ~mprowng system has been described
(Darlington and Burstall [6]) which enabled the user to write his program in a high level
abstract language using recurs~on equations and have them translated into more efficient
but less transparent versions. This earher system used several separate transformation
processes; the transformation rules described here unify and extend these processes
except for storage overwriting, which we have not yet considered.

At present in the new system the work is shared, though not lnterachvely, between the
user and the system. As the system is developed we hope to shift more work from the
user. At present (January 1976) the user is required to give:

(i) The hst of equations augmented by any necessary definitions (i.e. the ones
marked with "eureka" in the examples).

(u) A hst of useful lemmas in equation form (for use as rewrite rules) and statements
of which functions are associative or commutative or both.

(ii 0 A hst of all the properly instantmted left-hand sides of the equations on which the
user wants the system to work.

The system then searches through the space of all possible transformations of (lii)
looking for folds with 0) using either Algori thm 1 or Algori thm 2 as desired. The
resulting new equations are printed out for examination by the user. At present no effort
is made by the system to assess the efficiency of these new definitions.

A sample of a dmlogue with the system for the Fibonaccl improvement is shown in
Table I.

To see whether a fold can be achieved we use a matching routine. Gwen two
expressions this seeks a substitution which transforms the first into the second; for
example, gwen n + (m + k) and (n + 1) + (m + k) it finds that the substitution n goes to
n + 1. Our matching routine has commutatw~ty and assocmtivity budt into it where this is
specified; for example, given n + (m + k) and m + (n + 1 + k) it can still fred the same
substitution. It is also capable of matching to within an abstraction; an example of this is

www.manaraa.com

52 R. M. BURSTALL AND J. DARLINGTON

TABLE I. SAMVLE DJALOOU£ FOR FIBOIqACCl

START; (user starts dialogue)
INPUT EQUATIONS, END WITH Z (system responds)
f(0) ~ 1 (user inputs equations)
f(t) ~ 1
f (x+2) ~/(x + 1) + f(x)
g(x) ~ (f(x + 1), f(x))
z
INPUT REWRITING LEMMAS, END WITH Z
Z (no lemmas needed; assoclatlvlty and commutatwlty are indi-

cated when the functmns are declared)
INPUT INSTANCES OF FUNCTIONS YOU
ARE INTERESTED IN, END WITH Z (system responds)
g(o)
g(x + 1)
f(x + 2)
z (system starts work outputtmg results as it gets them)
g(O) ~ (1, 1) (system outputs any ground term ~t achieves)
g(x + 1) ,(= (u + v, u) where (u, v) = g(x)

several other folds
f(x + 2) © u + v where (u, v) = g(x)

(system outputs any fold it achieves)

several other folds

given below. Thus these laws are never applied unless they immediately result in a fold.
Plotkin [14] gwes a general theory of braiding in laws to unification. We are grateful to
Rodney Topor for the associatwe and commutat ive parts of the matcher [15].

For an example of mbuilt where-abstraction, consider the F tbonaco example . Simple
unfolding gives the system g(x + 1) ~ (f(x + 1) + f (x) , f (x + 1)), which it is trying to fold
with g(x) ~ (f(x + 1), f (x)) .

The matching routine spots that all the necessary components for a match with (f(x +
1), f (x)) are present within (f(x + 1) + f (x) , f (x + 1)), and it forces the rearrangement of
the lat ter into (u + v, u) w h e r e (u, v) = 6¢(x + 1),f(x)) by applying abstraction; this folds
immedmtely

FUTURE DEVELOPMENTS. A desirable next stage in the development of our system is
to get it to produce automatically the definitions that the user currently has to supply.
This is where a lot of the cleverness of the optimizat ion resides. Though m a number of
cases it is clear how to do this theoretically, it is not yet clear whether it can be done
efficiently without excessive search. The idea is to expand out to some extent the
computat ion tree generated by the equations and then to look for a match between the
higher nodes in this tree and the lower ones. We need a substitution which when applied
to the lower nodes gives the higher ones.

Consider, for example, the hst of factortals problem above where we were gwen the
equations

fact(n + 1) ~ (n +" 1)*fact(n)
factlist(n + 1) ~ cons(fact(n + 1), factlist(n))

We would like to express factlist in terms of some new function, say g, which would
itself have a recursive definition of the form g(n + 1) ~ - . - g(n) . . . or, more generally,
g(o-(n)) ~ . ' . g(n) . " for some arbitrary substitution or.

Since we cannot expand factlist(n + 1) further, we try factlist(n + 2); thus

factlist(n + 2) ~ cons~act(n + 2), [actlist(n + 1))
cons((n + 2)*fact(n + 1), cons(fact(n + 1), factlist(n)))

Pictorially the execution tree ts of the form

www.manaraa.com

A Transformation System for Developing Recursive Programs 53

facthst(n + 2)

fact(n + 2 ~

~ - - f a c t (n + l/~) ~ f acthst(n)

We notice that the substitution o-(n) = n + 1 takes the pair of terms on the bottom line
to those in the previous line. Thus if we put

g(n) ~ (fact(n + 1), factlist(n))

we can expressfactlist(n + 2) in terms ofg(n + 1) and expressg(n + 1) m terms ofg(n).
Similarly in the Fibonacci example we have the definition f(x + 2) ~ f(x + 1) + f(x).

Even without further expansion we have the computation tree

and notice that we can find a substitution or(x) = x + 1 which takes the lower pair of
nodesf(x + 1) andf(x) to the higher (overlapping) pairf(x + 2) andf(x + 1). Thus putting
g(x) © (f(x + 1), f(x)) we can express f(x + 2) in terms o f g (x + 1), and express
g(x + 1) in terms o fg (x) .

Thus we see that the general approach is to expand out the computation tree and seek
a substitution, taking some lower 'slice' across it into a higher shce across it. It is
appropriate for examples where the auxihary definition is a tuple of terms occurring in
the computation, but we will see other examples where it does not work. In Section 6,
recurs~on to iteration, we will need to introduce an extra variable, and in Appen&x 1 we
generalize from an element to a list of elements. Still it does show some rationale for
auxiliary definitions.

One further development we wish to incorporate in the near future is to give the
matcher the ability to synthesize subsidiary functions. Further detads of this technique
can be found in Darhngton [7].

6. Conversion to Berative Form
The same transformation system can be used to convert from recursive to iterative form.
We say that a set of definitions of functions {fl, "'" , fro} are in lterative form if for each
equation f~(xl, "'" , xn) ~ E, either E does not contain any of the f~, or it is of the form
f~(El, "'" , En) and El, "." , En do not contain any of the fz, or it is a conditional
expression whose alternatives are of one of these forms Such recursive definitions can be
trivially rewritten as loops with the f, as labels. The transformation is not automatic, as
we have to introduce a new defimtion each time; however, these defimtions are all of a
similar pattern and are "generalizations" of the original function definition, replacing
subexpressions on the right by variables and including the variables as extra parameters;
in each case the major operator on the right is associative. Such generalizations were
central to the success of the Boyer-Moore program prover [2], and we have profited
from the studies of Aubin [1] and Moore [13] who extended that prover to deal with
programs in the above lterative forms; they use generalization to translate from iterative
to truly recursive form (the opposite approach to ours).

Example 1. Factorial.

1. factortal(O) ~ 1 given
2. faetorial(n + 1) ~ (n + 1)*factorial(n) given

Introduce a new function f by generalizing n + 1 to u.

www.manaraa.com

54 R. M. BURSTALL AND J. DARLINGTON

3. f(n, u) ~ u.factorial(n)
4. f(O, u) ~ u
5. f(n + 1, u) ~ u*((n + 1)*factorial(n))

~ f(n, u*(n + 1))
6. factorial(n + 1) @f(n, n + 1)

This definition (l , 6, 4, 5) is in l terative form.

definition (eureka)
instantiate, unfold
lnstantiate, unfold
associativity of *, fold with 3
fold 2 using 3

A more succinct definition would be obtained by replacing 1 and 6 by factorial(n)
f(n, 1). Our rules, as they stand, do not allow us to derive this, but m Section 7 we discuss
an addit ional rule which would yield it.

Example 2. List reverse.

1. reverse(nil) ~ ml given
2. reverse(a :: x) ~ reverse(x) () (a :: nil) given

(:: and 0 are infixes for cons and concat; see Section 3 for defimtion.)
Introduce a new function f by generalizing a :: nil to u.

3. f(x, u) ~ reverse(x) () u definition (eureka)
4. f(nil, u) ~ u mstantiate and unfold
5. f(a :: x, u) ~ (reverse(x) () (a :: nil)) 0 u instantiate and unfold

f(x, (a :: rot) 0 u) assoclauvlty and fold

(~ f (x , a :: u) if we allow further unfolds, which is however contrary to our mechanzed
strategies.)

6. reverse(a : : x) ~ f (x , a :: nil) fold 2 with 3

Again this is in iterative form As before reverse(x) ~ f (x , nil) instead of 1 and 6 would
be more succinct but requires the extra rule described in the Secuon 7.

Example 3. Front ier of a tree. This example uses the same generalization but does
not produce an lterative function. It produces an equation of the form

f (x~ , ' " ,xn) ~ f (E~ ," . , En)

but the E, do contain f The new defimtion, however, is faster.
As in a previous example, by the frontier of a tree we mean the list of its tip elements

We need two constructor functions: up (to indicate a tip element) and tree (to form a
binary branch).

1. fronner(tip(a)) ~ a :: nil
2. frontier(tree(tl, t2)) ~ frontier(tl) () frontier(t2)

Introduce f by generalizing

3. f(t, u)
4. f(tip(a), u)
5. f(tree(tl, t2), u)

6. frontier(tree(tl, t2))

frontier(t) 0 u
~ a : lU
¢ (frontier(tl) ()frontier(t2)) () u
¢ f(tl , f(t2, u))

¢ f l t l , frontier(t2))

given
given

definition (eureka)
instantmte, unfold
instantiate, unfold
associativity, fold,
fold
unfold 2, fold with 3

This definition (1, 6, 4, 5) is faster since it only uses :: and not ().
frontier(t) ~ f(t, nil) is more succinct, but as before it needs an extra rule.

7. An Extra Transformation Rule: Redefinition

The transformation rules described so far have allowed us to start with a definition of a
function, lnstantlate it, unfold, and fold to get a new recurswe definition of it. But
sometimes for the sake of efficiency we may wish to move sn the opposite direct~on. Here

www.manaraa.com

A Transformation System for Developing Recursive Programs 55

Is an example of an improvement which cannot be made by our system so far (this IS due
to Michael Paterson). We define f by

1. f(0) ~ 0 definition
2. f(n + 1) ~ f(n) definmon

Now a bet ter defininon of f would be

f(n) ~ 0 (?)

but this is clearly not obtainable by instantiation, unfolding, and folding, havmgf(n) on
the left.

But the reverse direction can be done by our rules:

3. f'(n) ~ 0 definition
4. f'(O) ~ 0 lnstantiate
5. f'(n + 1) ~ 0 mstantlate

~ f ' (n) fold with 3

Now Dana Scott pointed out to us recently that we could introduce an extra rule into
our system, making use of the fact that if we can transform a function definition (say 3)
into a set of equations (4, 5) Identical to those defining some previous function (1 ,2) , we
know that the newly defined function is equal to the previous one wherever the latter
terminates. (We should check the totality of the previous definition to ensure that the
new one does not introduce spurious values where the previous one failed to terminate .)

Since we have just shown that f ' satisfies 4 and 5 and these are identical to 1 and 2
which define f , we may use this to redefine f to be

3. f(n) ~ 0

We call this new rule "redef ini t ion." In general we are given a function (totally)
defined by some equations and proceed as follows:

(a) Make a new definition for the given function (eureka)
(b) Transform this new defimtion by our previous rules to get equations identical to

the original equations for the given function.
(c) Replace the original equauons by the new definition (redefinition rule).
We have not had time to explore the utility of this new rule, which essentially allows us

to reverse our previous transformations. However it does clear up a difficulty ment ioned
in our recurslon to iteration examples above Recall that our final defimtion of factorial
was

1. factorial(O) ~ 1
6. factortal(n + 1) ~ f(n, n + 1)
4. f(O,u) ~ u
5. f(n + 1, u) ~ f(n, u*(n + 1))

Now to obtain a better (smaller although no

7. factorial'(n) ~ f(n, 1)
8. factorial'(O) ~ f(0, 1)

9. factorial'(n + 1) ~ f (n + 1, 1)
f(n, n + 1)

Now we use our new rule, noting the identity
latter with a copy of 7.

10. factortal(n) ~ f(n, 1) redefinition

Similarly we can obtain succinct definitions for reverse and frontier.

faster) version

definition (eureka)
instantiate 7
unfold with 4
mstantiate 7
unfold with 5, use l*x = x

of 8 and 9 with 1 and 6 and replacing the

www.manaraa.com

56 R. M. B U R S T A L L A N D J. D A R L I N G T O N

We have not implemented this new rule m our mechanized system, this could be put in
as an extra option w~th the user asserting, say

factorial(n) ~ f(n, 1) by redefinition

where the system could look up 1 and 6, instantlate the new deftmtlon similarly, unfold,
check the identity of the equations so obtained with the previous ones, and then remove
1 and 6 in favor of this new defimtion.

8. Abstract Programming and Data Type Change

In Darlington [5] and Darlington and Burstall [6] a method was presented where
hierarchically structured funcUonal programs were flattened into programs expressed
entirely in terms of the lowest level primitives, with consequent gain m efficiency but loss
of understandabil i ty. This was achieved (for straight line programs only) by a technique
of combined optimization with replacement of procedure calls by their bodies. The
implemented system had extra techmques built into it which took advantage of known
relationsh~ps between the abstract objects and their representat ions (m this case sets and
hsts or bit strings) to perform extra optJmizations. We now propose a new technique for
structuring such programs and show how the new method can flatten such programs
(which need not now be only straight line ones), doing away with the need to build m
representat ion dependent optlmizations.

The usual method of structuring data is to write primltwe functions for the higher,
more abstract data types m terms of the lower data types (see for example Hoare [10]).
We propose to remove the need to provide these and just ask for a single representat ion
function mapping the lower data type onto the higher. We are grateful to Hoare for
suggesting this slmphfication to us. The advantages of this method are

(i) Less work is involved for the programmer .
0i) The division between abstract object and representatzon ~s much cleaner and

more natural. All abstract programs are written entirely m terms of abstract primitives.
The representat ion relationship was implicit in the earl ier method but was never made
clear even to the programmer himself.

0ii) Resulting programs are much more modular and easier to modify If a user wants
to add a new representat ion all he has to do is to add one new representauon function,
not rewrite a number of functions.

We still have the problem of rewriting the abstract programs in terms of the lower
primitives. We show how our method accomplishes this by means of another simple
example, which we hope also clarifies this method of structuring programs.

Example 1. Twisting a tree. Suppose someone wishes to write programs to manipu-
late trees labeled with atoms at their nodes. He can define labeled trees inductively,
using constructors mltree and ltree.

niltree E labeled-trees
ltree: atoms × labeled-trees × labeled-trees ~ labeled-trees

(That is, hree is a three-argument funcuon taking an atom and two labeled trees and
producing a labeled tree)

Assuming a LisP-like machine on which binary trees are available as a basic data
structure with constructors nil and parr,

nil E binary-trees
atoms ~ binary-trees
pair: bmary-trees × binary-trees ~ binary-trees

The programmer could choose to represent the labeled trees using for each node a
binary tree consisting of first the atom and second another binary tree consisting of the
left and right subtrees. For example, parr(A, pair(ml, pair(B, pair(ml, nil)))) represents

www.manaraa.com

A Transformation System for Developmg Recurslve Programs 57

ltree(A, ndtree, ltree(B, mltree, ntltree)). To do this he would simply define the representa-
tion function

R: bmary-trees ~ labeled-trees
R(ml) ~ niltree
R(patr(a, pau(pl , p2))) ~ ltree(a, R(pl) , R(p2))

The user can now write labeled tree manipulating functions entirely m terms of the
labeled tree primitives. A very simple one is

twist: labeled-trees ~ labeled-trees
twist(niltree) ~ mltree
twist(ltree(a, tl, t2)) ~ hree(a, twist(t2), twzst(tl))

We now want to produce TWIST. bmary-trees --~ binary-trees which simulates this on
concrete data. Our method requires availability of a codmg functton C, reverse to the
representation function R, such that R(C(t)) = t We have some ideas on how to produce
such inverses automatically, but they are tentative and we omtt them here. In this case C
is

C: labeled-trees ~ bmary-trees
C(ntltree) ~ nil
C(ltree(a, t l , t2)) ~ parr(a, patr(C(tl), C(t2)))

We want TWIST(p) = C(twist(R(p))). Thus

labeled- twtst ABSTRACT trees)

(representaUon) (coding)

CONCRETE binary- TWIST
trees),

But this is not at all a usable definition since it uses twtst,
implemented. Let us massage it a little.

TWIST(ml) ~ C(twist(R(ml))) mstanuate
ntl unfold

TwiST(pair(a, pair(p l, p2)))
C(twist(R(patr(a, pair(p 1, p2))))) instantiate

© pair(a,patr(C(twist(R(p2))), C(twtst{R(pl))))) unfold
parr(a, parr(TWIST(p2), TWIST(p 1))) fold

This gives a recursive definition of TWIST in terms of the available concrete primitives
nd and parr.

Example 2. Treesort. Now consider the Treesort algorithm of Floyd [8]. This is a
sorting algorithm using arrays to represent trees. The algorithm makes repeated calls to a
procedure siftup, which takes an arbitrary tree and moves its root element along some
branch as long as it is smaller than one of ItS successor elements. We show here how a
version of this algorithm acting on concrete data (arrays) can be obtained systematically
from one acting on abstract data (labeled trees). The abstract labeled trees can be
represented concretely by an array A of atoms, where the successor nodes of A(n) are
A(2n) and A(2n + 1). For example, the tree

b J a ~ c

d/~e f/~g / \ /

labeled- ABSTRACT trees

1
binary- CONCRETE

t r e e s

R, and C, which are not

www.manaraa.com

5 8 R . M . BURSTALL AND J. DARLINGTON

is represented by the array A :

1 2 3 4 5 6 7 8 9

A(i) a b c d e f g h i

Now we have to deal with subtrees such as

t l

10

1

and these will be represented by parnal arrays such as A ' :

z 2 4 5 8 9 1 0

A'(t) b d e h i 1

We need to form a notat ion for such partial arrays by selecting out certain indices from
some other array. Let k be the size of the original tree; for simplicity we keep it fixed
throughout. Now we define n 1', for any n >- 1, to be the set of indices corresponding to
the subtree rooted at n; thus

n'~ ~ O l fn > k
{n} t3 (2n)1' U (2n + 1)1' otherwise.

In the example, 21" = {2,4,5,8,9,10}, the indices of the left-hand subtree.
We call the set of part ial arrays with subscripts m n ~ arrays.; for example A ' above is

m arraysz. We call the set of trees which they represent trees.. To be precise, arrays, is
the set of functions (n "~ ~ atoms), and trees, is defined inductively by trees, is {niltree} if
n > k, and otherwise by trees, is the set of all trees of the form ltree(a, t l , t2) where a is an
atom, t l is m trees2, and t2 in trees2.+1.

An tmportant operatmn corresponding to taking a subtree of a tree will be taking a
subarray of an array. I fA is in arrays, and m Is in n 1", we write Am for the restriction of A
to indices in m'{'. So, for example, A ' in the above example could be written A z, being
the p a m a l subarray rooted at 2. In general , if A is m arrays., then As . in arraysz, and
A2.+1 in arraysz.+~ represent the left and right subtrees of the tree represented by A .
Clearly ff m E n ~ , An(m) = A (m) and (A n)m = Am.

NOW for each pair of domains (arraysn, trees.) we must define a representat ion function
r . and a coding function c. inverse to it Thus

r.: arrays. ~ trees,, (representat ion, concrete ,to abstract)
c.: trees. ~ arrays. (coding, abstract to concrete)

They are defined recursively by

r.(A) ~ niltree If n > k Of n > k then n " = Q
and arrays, contains only the
empty array 2~)

otherwise r.(A) ~ ltree(A(n), r2.(Az.), r2.+l(A2n+O)
cn(mttree) ~
c.(ltree(a, t l , t2)) ~ {(n, a)} t_J cz.(tl) t..I c2.+j(t2)

These have the desired property that if A ~ arrays., then c.(r.(A)) = A .
We will not do the whole of the treesort algori thm, but concentrate on the main

procedure, which is called "siflup," by Floyd. (Since we write our trees with their roots
up in the air, we should call it "siftdown", we just use "stfl.") It produces a rearranged
tree with the top e lement moved down a branch so far as possible over e lements which
are larger than it. (The idea of the algorithm is to get a tree with each branch sorted in
order and to maintain this state of affairs when new elements are added, all of this using
s,~.)

www.manaraa.com

A Transformatton Sys tem for Developing Recursive Programs 59

There are a number of cases in the definition ofsi)2, depending on the relative sizes of
the top three elements of the tree. Since they are all similar, we discuss just one case.

The abstract function is

sift: labeled-trees ~ labeled-trees

In the case a l < a2 and a2 _> a3 it is defined by

sif t(l tree(al, ltree(a2, t l l , t12),
ltree(a3, t21, t22)))

ltree(a2, soft(l tree(al , t l l , t12)),
ltree(a3, t21, t22))

We now define a function S1FTn on concrete data: for each n -> 1,

SIFTn: arraysn --~ arraysn
SIFTn(A) ~ cn(sift(r~(A)))

This cannot be run as it stands since it uses the abstract sift, we wish to transform It into
one which can be run.

We consider the typical case A (n) < A (2n) and A (2n) -> A (2n + 1) (assuming that 2n +
1 -< k so that these elements exist).

S I F T . (A) ~ {(n, A(2n))}
U c2.(stfi(ltree(A (n), ra.(A4.), r4.+l(A4.+0)))
U c2n+,(rzn+a(A2n+,))

by unfolding with the defimtions of rn, stfl , and Cn.

(Note that we view partial arrays as functions, i.e. sets of index value pairs, and use
umon to combine them, {(n, A(2n))} is the partial array with just one index n.)

First cm(rm(B)) = B, for any m and B E arrays,. , so the last term is just A2.+1.
Now to do a fold on S I F T we would like the second term to be of the form SIFTm(A ') ,

for some m and some A ' . Since It is m arrays2., m = 2n; now SIFT2 . (A ') is

e2n(sift(rzn(A'))), Le. c2.(sifi(ltree(A'(2n), r4n(A~.), r4.+,(A~.+l)))),

so comparing this with the second term,

A ' (2n) = A(n) , A;,~ = A4n , A~n+l = A4.+l.

That ~s, A ' is hke A2. except that its value for index 2n is A (n) instead of A(2n). This
suggests that we introduce a substitution operation on arrays such that B[i/a] is an array
like B but with value a for its tth element. Formally, B[t l /a l , • • • , i . / a .] is an array B'
such that B'qO = al, • • • , B'(t .) = a . and otherwise B'q) = B(1). Now we can p u t A ' =
a2 . [2n /A(n)] .

This digression motivates us to rewrite S1FT. (A) as

S1FT. (A) ~ {(n, A(2n))}
U Cz.(sifi(ltree(A'(2n). r4.(A;.), r4.+,(A;.+,))))
I.J A2n+l

w h e r e A' = A2.[2n /A(n)]
© {(n, A(2n))}

U c2n(sifi(r2n(A')))
k.J A2n+l

w h e r e A ' = A2.[2n/A(n)]

{(n, A (2n))}
U SIFT2. (A ')
L.I A2n+1

w h e r e A ' = Az . [2 n /A (n)]

(eureka)

by folding with the definition of r

by folding with the definition of SIFT,

www.manaraa.com

6 0 R . M . BURSTALL AND J. DARLINGTON

This is the required recursive defimtion for SIFT. It operates on part ial arrays. The
substitution operat ion corresponds to an assignment to one e lement of the array.

The key step above, marked with "eureka , " involves some tricky forethought and
looks hard to mechanize. However it is a preparat ion for folding just as is the use of
associativity in other examples; one might imagine a matching algorithm which has built
into it various propert ies of substitution and uses them to force a fold. We have run the
above transformations on our system, but only by supplying the key substitutions as
rewrite lemmas. The intuitions behind these manipulations are less complex than our
rather barbarous notat ion would suggest, and this is an open area for research.

But we are still not finished because Floyd 's sift procedure is i terative, and it is
important that one can work iteratively on a single array without copying. The stout-
hear ted reader may follow the further transformations required; others may skip to
Section 9.

First we notice that we can use the propert ies of substitution to express the three terms
in the above definition for SIFT. using just one array A":

SIFT,(A) ~ {(n, A"(n))} O SIFT2,(A~n) 0 A~,+i
where A" = a[2n/A(n), n/A(2n)] (eureka)

(This makes sense because it means "Exchange the nth and (2n)-th elements of A and
SIFT the subarray rooted at 2n.")

Notice that part of A" is being replaced by a SIFTed version. This suggests a general
operat ion of replacing the subarray of A rooted at m by B, and we define, for A in
arrays, and B in arraysm where m ~ n ~',

A +m B = (.4 - Am) tO B (eureka).

This enjoys "associatlvity," which we know to be helpful in getting l terative programs.

A +z (B +, , C) = (A +l B) +m C (lemma).

This + operat ion enables us to rewrite SIFT, simply as

SIFTn(A) ~ A" +2n SIFTzn(A~n)
where A" = A[2n/A(n), n/A(2n)]

Now we can analyze the computat ion of SIFTn by defining a subsidiary function to
describe how it depends on A",

In(m, B) ~ B +m SIFTm(Bm) definition (eureka)

This produces an array like B, but with the subarray starting at m sifted B must be in
arraysn. (This enables us to write

SIFT,(A) ¢ I,(2n, A")
where A" = as above fold.)

Can we transform this definition o f / t o make it i terative? Yes, if we use associativity of
+ in the famihar way and do some rather ticklish rewriting of expressions revolving +
and [].

l,(m, B) ~ B +m(B" +2m SIFT2m(B~m))
where B" = Bm[2m/Bm(m), m/Bm(2m)]

by unfolding with our last recursive definition of SIFT
(B + m B") -]-2m SIFT~m(B'2m)
w h e r e B" = B,.[Z,n/B,.(m), m/Bm(2m)]

by assocmtlvity of +
© B" +2,, SIFT~m(B~'m)

where B" = B[2m/B(m), m/B(2m)]
by various toggling propert ies of + , [], and subarray formation (eureka)

/.(2m, B")

www.manaraa.com

A Transformation System for Developing Recursive Programs 61

where B" = B[2m/B(m), m/B(2m)]
by folding with definition of In.

This definition is i teratwe and quite simple. The road to it was hard and l i t tered with
eureka's. We conclude that the basic transformation method works but runs up against
the obscurity which usually bedevils reasoning about data-structure overwriting. We
hope to stimulate further research on such reasoning.

9. Conclustons and Future Work
We have tried to abstract some general method from the particular tactics incorporated
in our previous improvement system (Darlington [5], Darhngton and Burstall [6]). Work
is continuing, and on the theoretical side the following problems are open at the moment
(January 1976).

(i) How wide a class of program improvements falls within the scope of our transfor-
mations? Can one obtain any formal characterization of this class?

(il) What are necessary and sufficient conditions that guarantee that our transforma-
tions produce an improvement? Can we indeed make a general argument on the basis of
the one for Fibonacci in Appen&x 2?

On the practical side, work is continuing with the implemented system to investigate
the behavior of different strategies. We would like to mechanize the generalization of old
defimtions to new ones, not just as outl ined in Section 5 but also where the new
defimtion needs an extra parameter , as in Section 6, or where totally new definitions are
needed, as m Appendix 1. We would also hke to look at the problem involved in
structuring the optimization of large programs.

The system can be simply extended to achieve the synthesis of algorithms from their
implicit (nonexecutable) defimtlons. Darhngton [7] gives simple examples of this.
Recently the same author has used this techmque to investigate the structure of classes of
algorithms by at tempting to synthesize all algorithms in a class from a common high level
deflmtion. The first class to be investigated was the sorting algorithms, and so far six
well-known sorting algorithms have been synthesized (manually) from one high level
definition.

We should mention relevant work by other people. Courcelle and Vudlemin [4]
provide a mathematically rigorous t reatment of an inference system for a simple recur-
slve language. Manna and Waldinger [12], m their work on program synthesis, rode-
pendently develop a rule similar to our folding rule, although their presentat ion of the
underlying ideas is rather different. In a more general way our work Is akin to work by
Gerhar t [9] on transformations, to the Harvard work on program mampulat ion (Chea-
tham and Wegbre~t [3]), and to the large l i terature on optimization techniques m
compilers.

Appendix l. Testing Trees for Equahty of Frontiers

This is an example where the obvious defimtion may compute values which are never
needed, a problem proposed originally to illustrate the usefulness of coroutlnes. We have
no coroutine facility in our recursion equation language, but we can achieve a similar
economy in computat ion, although in a rather less general way.

The problem is to test whether two given binary trees have the same frontier , where
the frontier of a tree is the list of ~ts tips. Thus m Figure 1 the trees t l and t2 are equal m
this sense, but t l and t3 are not. A natural approach is to define the desired testing
function eqtree m terms of a function frontier which produces a list from a tree, getting (A
B C D E F) for t l and (A B C D E F) for t2, and also a function eqlist to test whether
these two lists are equal. But then for t l and t3 we foolishly compute the whole of (A B C
D E F) and (G B C D E F) before noticing that they &sagree in the very first e lement .
We will try to obtain an improvement which avoids this.

We need a data type atom, from which we derive a data type tree, using constructor
functions ttp to in&care a tip and tree to combine two subtrees

www.manaraa.com

62

E F

frontler(t l) = (A B C D E F)
frontter(t2) = (A B C D E F)
frontter(t3) = (G B C D E F)
eqtree(tl , t2)
eqtree(tl , t3)

R M. BURSTALL AND J. DARLINGTON

B C / / / ~ F G B E F

/ \
D E

= eqhst(frontter(tl) , frontmr(t2)) = true
= eqlist(frontter(tl), frontier(t3)) = false

FIG 1 Trees

ttp : atoms ~ trees
tree: trees × trees --> trees

We also need lists of atoms and of trees, so for any type alpha let

nil ~ alpha-hsts
cons" alphas x alpha-lists ~ alpha-hsts

We again write x :: X for cons(x, X).
We make a habit of specifying the type of each new function, using the usual notation

f: S --~ T, although this is outside our formahsm.
We first define some auxlhary functions, then the mare function eqtree (Figure 1)

which tests trees for equahty of their frontiers.

concat: alpha-lists × alpha-lists ~ alpha-hsts (concatenation, alpha IS any type)

We again write X 0 Y for concat(X, Y)

1. nil () Y ~ Y
2. (x : :X) 0 Y ~ x : : (X O Y)

eqhst: atom-lists × atom-lists --> truth values (list equality)
3. eqhst(ntl, nil) ~ true
4. eqlist(nil, y :: Y) ~ false
5. eqlist(x :: X, nil) ~ false
6. eqhst(x :: X, y :: Y) ~ eq(x, y) and eqlist(X, Y)

where eq tests equahty of atoms
fronUer: trees -~ atom-hsts (list of atoms at tips of tree)

7. frontier(tip(a)) ~ a :: nil
8. frontier (tree (t l , t2)) ~ frontier(t1) () frontier(t2)

eqtree: trees × trees --~ truth values (tree equality, same tip sequence)
9. eqtree(s, t) ~ eqlist (frontier (s), frontier (t))

If we now try to improve eqtree by the methods used above, we have no success. To
overcome this we introduce a more general function, E Q T R E E L I S T (see Figure 2)
which tests whether two lists o f trees have the same tip sequence. (We use upper case for
varmbles taking hsts of trees as values and for functions taking lists of trees as arguments,
analogous to but distinct from the variables and functions in lower case.) The motwe
here is that as we decompose a tree the current state is some cross section across the tree,
but this is just a list of subtrees In the coroutine method these subtrees would be there
behind the scenes, associated with coroutine activations. We have to make them vulgarly

www.manaraa.com

A Transformatton System for Developing Recursive Programs

A B E F

~2 (A

B C F

D E

63

G B E F

FRONTIERLIST(T1) = ((A B) (C) (D) (E ~)
FRONTIER(T1) = flatten (FRONTIERLIST(T1))

= (A B C O E F ~
FRONTIER(T2) = (A B C D E F)
EQTREEL1ST(T1, T2) = eqhst(FRONTIER(T1), FRONTIER(T2))

= true

FiG 2 Tree hsts

explicit . Again we need an auxdiary funct ion F R O N T I E R to give the hst of a toms at the
tips of the whole hst of t rees ; thus FRONTIER: tree-hsts ~ atom-hsts (see Figure 2).

10. FRONTIER(T) ~ f la t ten(FRONTIERLIST(T)) (eureka)

where F R O N T I E R L I S T takes a list of t rees to the hst of their indwidual f ront iers
FRONTIERLIST: tree-lists ~ atom-hst-lists

11. FRONTIERLIST(ni l) ~ ntl
12. FRONTIERLIST(t :: T) ~ frontier(t) :: FRONTIERLIST(T)

and flatten takes this hst of lists to a hst of a toms, by conca tena t ing Its e lements
flatten: atom-hst-lists ~ atom-hsts

13. flatten(nil) ~ nd
14. flatten(l :: L) ~ 1 0 flatten(L)

E Q T R E E L I S T : tree-lists × tree-lists ~ truth values (equal i ty for tree lists)
15. E Q T R E E L I S T (S , T) ~ eqhst(FRONTIER(S), FRONTIER(T))

Now we can use t ransformat ions to redef ine eqtree m terms of E Q T R E E L I S T since a
t ree is a singleton hst of t rees . We need a i emma , l 0 nd = I.

16. eqtree(s, t) ~ eqlist(frontier(s), frontier(t)) r epea t of 9
eqlist(frontier(s) 0 nil,frontier(t) 0 nd) i emma about 0 (eureka)
EQTR E E LIST(s :: nil, t :: nil) fold 13, 14, 11, 12, 10, 15

N o w let us improve E Q T R E E L I S T . It is most clear if we start on F R O N T I E R ,
t ransforming each equa t ion .

17. FRONTIER(nd) ~ f latten(FRONTIERLIST(nil)) mstant la te 10
ntl unfold 11 and 13

18. FRONTIER(ttp(a) ": T) ~ flatten(FRONTIERL1ST(tip(a) :. T))
instant iate 10

(a :: nil) O f la t ten(FRONTIERLIST(T))
unfold 12, 7, 14

(a :: nil) 0 F R O N T I E R (T) fold 10

www.manaraa.com

6 4 R . M . BURSTALL AND J. DARLINGTON

19. FRONTIER(tree(t1, t2) :: T)~flatten(FRONTIERLIST(tree(tl, t2) :" T))
instantmte 10

(fronuer(t l) O frontier(t2))
0 flatten(FRONTIERLIST(T))

unfold 12, 8, 14
~ frontier(tl) () (frontier(t2)

0 flatten (FRONTIERLIST(T)))
associativlty of 0

FRONTIER(tl :: (t2 :: T))
fold 14, 12, 14, 12, 10

(Notice that the use of associatiwty here requires some insight since an alternative step is
to fold with 10 immediately, which does not give the result we want)

Finally we use this new definition of FRONTIER to improve EQTREELIST itself,
and thus improve eqtree which uses it

20. EQTREELIST(nil, nil) ~ true instantiate 15, unfold 17, 3
21. EQTREELIST(ttp(a) :: S, nil) ~false mstantiate 15, unfold 18, 17, 2, 5
22. EQTREELIST(nil, tip(b) :: T) ~ false similarly
23. EQTREELIST(tip(a) :: S, tip(b) :: T) ~ eq(a, b) and eqlist(FRONTIER(S),

FRONTIER(T))
instantmte 15, unfold 18, 2, 1, 6

eq(a, b) and EQTREELIST(S, T)
fold 15

24. EQTREELIST(tree(sl, s2) :: S, T) ~ eqlist(FRONTIER(sl :: (s2 :: S)),
FRONTIER(T))

mstantlate 15, unfold 19
EQTREELIST(sl :: (s2 :: S), T)

fold 15
25. EQTREEL1ST(S, tree(t1, t2) :: T) © EQTREELIST(S, tl :: (t2 :: T))

similarly

20-25 give a direct recursive definition of EQTREEL1ST with no auxiliary functions.
This reduces each tree from the left-hand end as far as necessary, as shown m the
example in Figure 3 24 and 25 are used in any order (nondetermimstically) until the first
tip m each treellst is reached; then the tips are compared using 23, which stops the whole
process immediately if they are not equal. 20-22 cope with the nd cases. Execution of
EQTREELIST is radically different from that using the original deflniuon 9, which built
up the concept in a well-structured but computat ionally inefficient way involving unnec-
essary computat ion of large intermediate lists.

Appendix 2. Improving the Ftbonaccl Functton
To examine whether a sequence of transformations by our rules improves the efficiency
of the program, let us try to prove that this is the case for the Fibonaccl example . This
should throw light on the principles involved without requiring an elaborate and imper-
spicuous formal apparatus

First we rewrite the transformations, giving a subscript to distingmsh each new
function symbol as we define it, since these variants, although they may not differ m
meaning, certainly differ in efficiency.

We concentrate on the auxiliary function g, which is defined m terms of the original
Fibonaccl function f .

g(x) ~ ~f(x + 1), f(x)) definition
g~(O) ~ i f (l) , f(O)) mstantiate
gz(O) ~ (1, 1) unfold
g3(x + 1) ~ (f(x + 1 + 1) , f (x + 1)) mstantiate

www.manaraa.com

A Trans format ton Sys t em f o r Deve lop ing Recurs ive P r o g r a m s

tl

A B C D

A D

/ \
A B c D

/2:

c D

T 2 (~ A)

c D

65

D Tll(~ ~)
c T2,(c

eqtree(t I, t2)

T2,'(

c D

= EQTREELIST(T1, T2) = EQTREELIST(TI', T2)
= EQTREELIST(TI", T2) = EQTREELIST(TI", T2')
= eq(A, A) and EQTREELIST(Tlt, T21)
= EQTREELIST(Tll, T21) = EQTREELIST(Tll, T21')
= eq(B, G) and . = false

Fm 3 Using improved definmon of eqtree

g4(x + 1) ~ ?f(x + 1) + f (x) , f (x + 1)) unfold
gs(x + 1) ~ (u + v, u) where (u, v) = (f(x + 1), f (x)) abstract ion
g6(x + 1) ~ (u + v, u) where (u, v) = g(x) folding
gT,z(x + 1) ~ (u + v, u) where (u, v) = gT.2(x) folding

Notice that folding is done in two steps, first replacing an instance of the r ight-hand
side of the original g equa t ion by the lef t-hand side, which still leaves ge ul t imately
defined m terms of f , then replacing this by a recursion. We call the new funct ion g7,2
because we wish to imply that the equa t ion for g2 is to be used when x = 0.

Let us now write ~b[n] to denote the n u m b e r of ar i thmetic opera t ions needed to
compute the value of the function symbol ~, using its equat ions , for the n u m b e r n as
a rgument . For Fibonaccl this is the n u m b e r of addit ions (ignoring + 1 , successor).

Now ins tant la t lon and unfolding do not affect the n u m b e r of operat ions , so

g2[0] = g~[0] = g[0] and g4[x + l] = g3[x + 1] = g[x + 1].

By a trivial induct ion f ix + 1] >-- 1 lfx >-- 1, so gs[x + 1] < g4[x + 1] lfx >-- 1 (that is, where-
abstract ion makes an improvement) .

Clearly the first stage of folding does not affect the n u m b e r of operat ions , so g6[x + 1]

www.manaraa.com

66 R . M . BURSTALL AND J. DARLINGTON

= gs[x + 1] < g[x + 1] i fx --> 1. We wish to show f rom this thatgr.2[x + 1] < g[x + 1] i fx
>- 1. But for this it is easy to show by induct ion that for all x -> 0,

gT,~[x] < g[x] i f x -> 2,
-<g[x] i f x = 0 0 r x = 1.

Base. I m m e d i a t e i f x = 0 0 r x = 1.
Step. S u p p o s e x _> 1 andgr,~[x] -<g [x]; we need to show thatgT,z[x + 1] < g[x + 1].

But the equat ion for g7,z ts just like that for g6 with gT,~(x) for g(x). By our hypothests that
gr,2[x] -< g[x] we have gT,z[x + 1] -< gG[x + 1]. But we a l ready have gG[x + 1] < g[x + 1], so
gr.2[x + 1] < g[x + 1].

To summar ize , we have p roved direct ly that where-abs t rac t ion makes an i m p r o v e m e n t
and that folding preserves it (in fact it amplif ies it by doing it at each level of the
recurs ion)

In genera l one can see that the improvemen t s are in t roduced by where -abs t rac t ion or
rewri t ing l emmas , and also that folding will p rese rve any such tmprovemen t s p rov ided
that the base case is no worse and that the a rgumen t of the equa t ton used m the
subst i tut ion is lower m some wel l - founded order ing than that of the equa t ton undergo ing
the fold.

ACKNOWLEDGMENTS I n d e p e n d e n t work by J M o o r e and R a y m o n d A u b m ex tend ing
the B o y e r - M o o r e t h eo rem prover to handle essential ly i terat ive p rograms that accumu-
late a result he lped us deve lop the t echn ique of t ranslat ing recurs ion out l ined in Sect ion
6. We would like to thank M. Pa te rson and D Scott for their cont r ibut ions descr ibed in
Sect ion 7 and C.A .R . H o a r e for suggest ing that we look at the represen ta t ion function
prob lem which we tackled in Sect ion 8. We have had va luable conversa t ions with our
co l leagues R. Aubm, G. Plotkin, and R. T o p o r J. Schwarz he lped us with the Treeso r t
examp le R Boyer and J Moore inf luenced us a great deal , as did J. Vu l l l emm. Our
recent work on synthesis was s t imula ted by Z . Manna and R. Waldlnger . M e m b e r s o f
I F I P Work ing G r o u p 2.3 provided a va luable st imulus. Clear ly we owe much to E .
Dt jks t ra for the inf luence of his s t ruc tured p r o g r a m m i n g ideas. Fmal ly we would like to
thank the referees (J. Morr is and A . N . O the r) for their very helpful and p e r c e p t w e
c o m m e n t s and E . Kerse for typing.

REFERENCES
1 AUBIN, R Some generahsation heuristics m proofs by reduction Proc IRIA Symp Proving and

Improving Programs, Arc-et-Senans, France, 1975, pp 197-208
2 BORER, R S , AND MOORE, JS Proving theorems about LISP functions J ACM 22, 1 (Jan 1975), 129-

144
3 CHEATHAM, T E JR , AND WEGBREIT, B A laboratory for the study of automatmg programming Proc

AFIPS 1972 SJCC; Vol 40, AFIPS Press, Montvale, N.J., pp 11-21
4 COURCELLE, B , AND VUILLEMIN, J Semantics and axlomatlcs of a simple recurslve language Proc Sixth

Annual ACM Symp Theory of Comptg , 1974, pp 13-26
5 DARLINGTON, J A semantm approach to automatic program ,mprovement Ph D Th , Dep Artif lntel ,

U of Edinburgh, Edinburgh, 1972
6 DARLINGTON, J , AND BURSTALL, R M k system which automatically improves programs Proc Third

lnt Joint Conf on Artlf Intel , Stanford, Cahf , 1973, pp. 479-485. (To appear m Acta lnformattca,
1976.)

7 DARUNGTON, J Application of program transformation to program synthesis Proc 1RIA Symp Proving
and Improving Programs, Arc-et-Senans, France, 1975, pp 133-144

8 FLOYD, R.W Algorithm 245, TREESORT 3 Comm ACM 7, 12 (Dec 1964), 701-702
9 GERUARX, S L Correctness-preserwng program transformatmns Conf Rec Second Symp Principles of

Programming Languages, Palo Alto, Calif, 1975, pp 54-66
10 HOARE, C A R Proof of correctness of data representations Acta lnformatica 1 (1972), 271-278
11 KNtrrH, D E Structured programming w, th go to statements ACM Computing Surveys 6, 4 (1974),

261-301
12. MANNA, Z., AND WALDINGER, R Knowledge and reasomng in program synthesis Arttf lntel J 6, 2

(1975), 175-208

www.manaraa.com

A Transformatton System for Developing Recurstve Programs 67

13 MOORE, .IS In t roduc ing Iteration into the pure LISP theo rem prover CSL-74-3 , Xerox Palo Al to Res
C t r , Palo Al to , C a h f , 1975

14 PLOTKIN, G Budding m equat tonal theories Machtne lntelhgence 7, B Meltzer and D. Michm, Eds ,
Ed inburgh U Press, Ed inburgh , 1972, pp 7 3 - 9 0

15 ToPoR, R W Interact ive p rog ram verif icat ion using virtual p rograms Ph D Th , Dep Ar t l f Intel , U
of Ed inburgh , Ed inburgh , 1975

RECEIVED JULY 1975; REVISED JANUARY 1976

Journal of the Assoctation for Computing Machinery, Vo| 24, No 1, January 1977

