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ABSTRACT A system of rules for transforming programs 1s described, with the programs n the form of
recursion equations An 1ntially very simple, lucid. and hopefuily correct program 1s transformed into a more
efficient one by altering the recursion structure lllustrative examples of program transformations are given,
and a tentative implementation 1s described Alternative structures for programs are shown, and a possible
mmtial phase for an automatic or semiautomatic program manipulation system is indicated
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1. Introduction

We present here a system for transforming programs, where the programs are expressed
as first order recursion equations. This recursive form seems well adapted to manipula-
tion, much more so than the usual Algol-style form of program, and our transformation
system consists of just a few simple rules together with a strategy for applying them.
Despite their simplicity, these rules produce some interesting changes in the programs.

The overall aim of our 1nvestigation has been to help people to write correct programs
which are easy to alter. To produce such programs it seems advisable to adopt a lucid,
mathematical, and abstract programming style. If one takes this really seriously, at-
tempting to free one’s mind from considerations of computational efficiency, there may
be a heavy penalty in program running time; in practice it is often necessary to adopt a
more intricate version of the program, sacrificing comprehensibility for speed. The
question then arises as to how a lucid program can be transformed into a more intricate
but efficient one in a systematic way, or indeed in a way which could be mechanized.

It 1s perhaps surprising to notice that even in the rarefied language of purely recursive
programs there 1s a sharp contrast between programs written for maximal clarity and
those written for tolerable efficiency. As Knuth [11] points out, one does not have to
consider translation from an Algol-style language to a machine code language as
performed by optimizing compilers to get to grips with the issue; the contrast 1s in the
program structure, particularly in the recursion (or loop) structure. We start with
programs having extremely simple structures and only later introduce the complications
which we usually take for granted even in high level language programs. These complica-
tions arise by introducimng useful interactions between what were originally separate parts
of the program, benefiting by what might be called “economies of interaction.”

We proceed in a quite empirical manner, showing examples of various kinds of
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program transformation and how they can be achieved with our system. We make no
claim for any sort of completeness of the system; it embodies only one family of program
transformations, and we have no formal delineation of this family. Nor do we have a
general method of showing that the transformations improve efficiency. However, we
hope that the examples will give the reader pleasure and convince him that the system
has some power. He will see that the example programs become more complicated or
“intertwined”” as we transform them, less like mathematical definitions and more like
“sensible” programs. We would be grateful for any suggestions for capturing this notion
of intertwining more precisely.

The transformation rules can also be viewed as a possible initial phase of a mechanized
program transformation system In fact they arose from our efforts to understand and
systematize parts of an earlier system (Darlington [5], Darlington and Burstall [6]). That
system started by removing recursions 1n favor of iterations where possible; only then did
1t make transformations from abstract to concrete data and eliminate some redundant
computation; finally it arranged for overwriting of data structures. We now feel that as
much mamipulation as possible should be performed before removing recursion. In this
we were largely influenced by Boyer and Moore’s elegant and successful program for
proving facts about Lisp programs [2]

We have implemented our new rules as a semiautomatic program transformation
system which relies on guidance from the user for key steps.

In Section 2 we introduce the transformation method informally In Section 3 we
present it as a formal inference system whose sentences are sets of recursion equations.
In Section 4 we give examples of its application. In Section 5 we outline a strategy for
applying these transformation rules and describe the program improvement system
which we have implemented. In Section 6 we discuss conversion to iterative form. In
Section 7 we discuss a further rule that can be added to our system In Section 8 we
discuss translation of programs on abstract data to ones on concrete data In Section 9 we
list some open problems and related work. Finally, in Appendix 1 we apply our method
to a more substantial example, and in Appendix 2 we show how it 1s possible to prove
that the transformations do effect an improvement on a particular program.

2. An Example’

66,

Consider the following simple example. Given a function scalar product, written
vectors, defined by

,on

n

Xy = 2 X Vs

1=1

we might wish to computea-b + ¢-d. Rewriting this in recursive function form we have
dot(x,y,n) < ifn = Qthen O else dot(x,y,n — 1) + x[n]y[n] fi
and we want )
fla,b,c,d,n) <dot(a, b, n) + dotic,d, n)

This 1s a clear defimtion of f, but we do not really need two separate recursive
calculations (1.. two independent loops) Let us try symbolically evaluating f using its
definition

fla,b,c,d,n) & ifn = 0 then O else dot(a, b, n — 1) + a[n]p[n] i
+ if n = 0 then 0 else dot(c, d, n — 1) + c[nld[n] fi
& ifn = 0 then 0 + 0 else (dot(a, b, n — 1) + a[n]b[n])
+ (dot{c,d, n — 1) + c[n}d[n) fi
by a simple property of if - - - then

& if n = 0 then 0 else (dot(a, b, n — 1) + dot(c,d, n — 1))

+ a[nlp[n] + c[nld[n] fi

by sumple properties of + and a sly rearrangement.
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But dot(a, b, n — 1) + dot(c,d,n — 1) 1sfla, b, c,d, n — 1), so we write

fla,b,c,d,n) &ifn = 0then Oelse fla, b, c,d, n — 1) + a[nb{n] + c[nld[n] fi.

This gives us a recursive defmition of f, without using dot. It does not save any
multiplications or additions (except the final one) but it combines the loop overheads and
tests. Notice how the two scalar product calculations have become intertwined. Our
(slight) economy comes from this interaction; we have lost lucidity by 1t

Thus we have first symbolically evaluated the program (we call this “unfolding”), then
rearranged it, and then mtroduced a recursion (we call this “folding”).! Let us now be
more precise about these transformation rules

3. Transformation Rules
First let us polish our notation a little. A definition like

dot(x,y,n) < if n = 0 then 0 else dot(x, y, n — 1) + x[nly[n] fi

is convenient for program execution, but for transformation purposes it seems rather
easier to rewrite it as

dotlx,y,0) < 0
dot(x,y,n + 1) & dot(x, y, n) + x[n + 1ly[rn + 1]

Thus is easily translatable back mnto the conditional form, given that 0 and x + 1 are
mutually exclusive and exhaustive forms for nonnegative numbers and that x — 1 is the
inverse of x + 1.

As another example, the Fibonacci function

fx) &ifx =0o0rx = 1then1else f(x — 1) + fix — 2) fi

becomes

o<1, f(HEL, fe+2)<fix+ 1)+ flix)
The concatenation function on lists

concat(x, y) < if x = nil then y else cons(car(x), concaticdr(x), y)) fi

becomes

concat(nil, z) & z, concat{cons(x, y), z) & cons(x, concat(y, z))
Reworking the scalar product example, we get

fla,b,c,d,n) &dot(a, b, n) + dot(c, d, n)

fla,b,c,d, 0) &dot(a, b, 0) + dotlc, d, 0)
&0

fla,b,c,d,n+1) <&dotla,b,n + 1) + dot{c,d, n + 1)
&dot(a,b,n) + aln + 1b[n + 1] + dot(c,d, n) + c[n + 1d[n + 1]
&dotla, b, n) +dot(c,d,n) +a[n + 11b[n + 1] + c[n + 1ld[n + 1]
&fla, b, c,d,n) +a[n + 1Jb[n + 1] + c[n + 1)d[n + 1]

We can now develop the method as a formal inference system whose sentences are
recursion equations We omit definitions of well-known notions like instance and assume
the usual call-by-name semantics of recursion equations.

Preliminaries. We need the following:

Primutive function — a set of primitive function symbols &,/, .. . and ¢, d, . . . with zero
or more arguments; the subsetc, d, . . . of primitive symbols are the constructor function
symbols. (One of the primitive functions can be the conditional.) Examples of construc-
tor functions would be cons and successor, which 1s written . . . + 1 above

! The folding 1dea 1s also used by Manna and Waldinger {12] in their program synthesis work They developed
it independently at about the same time as we did
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Parameter —a set x, y, . . . of parameter variables.

Recursive function —a set f, g, . . . of recursive function symbols.

Expression —an expression built in the usual way out of primitive function symbols,
parameter variables, and recursive function symbols. We allow the where construc-
tion E where (u, - -+ ,w) = F or E where u = F, E and F being expressions and u,

-, w being taken from a set of local variables (for example u + u® where u = a + b).

Lefi-hand expression —a left-hand expression is of the form fle,, - , e,), n = 0,
where e,, - - - , e, are expressions involving only parameter variables and constructor
function symbols (disallowing where).

Right-hand expression —a right-hand expression is an expression.

We use E, F, G, possibly with primes or subscripts, as metasymbols to denote
expressions.

Recursion equation —a recursion equation consists of a left-hand expression and a
right-hand expression, written E <& F.

Examples. fc) € k. fld(x, y)) < l(u, u) where u = m(x, y).

We have the usual notion of substitution and of one expression being an mstance of
another.

Inference rules for transforming recursion equations. Given a set of recursion equa-
tions, we may add to the set using the following inference rules, all except folding being
rather obvious. We illustrate the rules by reference to the above example.

(i) Definition. Introduce a new recursion equation whose left-hand expression is not
an nstance of the left-hand expression of any previous equation. For example,

fla,b,c,d, n) &dota, b, n) + dotic, d, n).

() Instantianon. Introduce a substitution instance of an existing equation. For
example, instantiate

fla,b,c,d,n) &dotla, b, n) + dotc, d, n)
to
fla,b,c,d, 0) &dotia, b, 0) + dot(c, d, 0).

(m) Unfolding If E < E' and F < F' are equations and there is some occurrence in F'
of an instance of E, replace it by the corresponding instance of E’, obtaining F”; then add
the equation F & F”. For example, unfolding with

dotix,y,n + 1) &dotlx,y,n) + x[n + 1y[n + 1] (E € E’)
takes

fla,b,c,d,n + 1) &dotla,b,n + 1) + dotlc,d, n + 1) (F& F)
to

fla,b,c,d,n + 1) &dota, b, n) + aln + 1)b[n + 1] + dot(c, d, n) + c[n + 1d[n + 1]
(F&E F").
(wv) Folding. If E & E’ and F & F' are equations and there 1s some occurrence in F' of

an instance of E ', replace 1t by the corresponding instance of E, obtaining F”; then add
the equation F < F”. For example, folding with

fla, b, c,d, n) &dotla, b, n) + dot{c,d,n) (E & E")

takes

fla,b,c,d,n + 1) &dotla, b, n) + dotlc,d,n) +aln + 1Jb[n + 1] + c[n + 1]Jd[n + 1]
(F&F)

to

fla,b,c,d,n+1)&fla,b,c,d,n) +aln + 1b[n + 1] + c[n + 1d[n + 1] (F & F").
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(v) Abstraction. We may introduce a where clause by deriving from a previous
equation E <& E’ a new equation,

E¢E,[ul/Fl7 o 5un/Fn]Where<ul> e 9un> =<Fl, ot 7Fn>'

Abstraction 1s not used in the dot example. We can see an example of its use in the
Fibonacci example in Section 4.

(vi) Laws. We may transform an equation by using on 1its right-hand expression any
laws we have about the primitives k, [, .. (associativity, commutativity, etc.), obtaining
a new equation For example, the commutativity of + enables us to rewrite

fla,b,c,d,n + 1) &dotla,b,n) + afn + 11b[n + 1} + dot(c, d, n) + c[n + 11d[n + 1]
as
fla,b,c,d,n + 1) <&dotla,b,n) +dotlc,d,n) + aln + 1pjn + 1]+ c[n + 1ld[n + 1].

Each new equation obtained by these rules may be taken as a defimtion of the function
appearing on the left provided we take a disjoint and exhaustive subset of them. (The
notions of disjointness and exhaustiveness depend on the data domain; we do not
attempt an explicit definition but they should be clear enough for integers, hsts, etc.)

We believe that these inference rules preserve correctness, although we do not have a
formal proof of this. An informal argument, for which to thank G. Piotkin, 1s that the
effect of using our rules could equally well be obtained as follows: First rewnte the
definitions, say E < E’, F& F', ... (1), as the corresponding equations E = E', F=F',
... {n); now each of our transformatton rules can be seen to correspond to a sound rule
for deducing a new equation, so use these rules to get new equations, say E, = E{, F, =

1> - - (ui); then choose a subset of these (exhaustive and disjoint), say E, = E;, F, =
Fj, ... (iv), then rewrite these as definitions E, < Ej}, F, & F;, ... (v). Now the
functions defined by (v) satisfy eqs. (1v) and are the least such functions. But the
functions defined by (1) satisfy eqs. (1) and hence eqs. (1i1) and hence eqs. (1v) So the
functions detined by (v) are less than or equal to the ones defined by (1). (f1s less than or
equal to g if f(x) = g (x) whenever f(x) is defined ) That is, we retain correctness, but we
might lose termination unless we impose some extra restriction

As to whether our transformations improve the efficiency of programs, we do not
know sufficient conditions for this in general. However, in Appendix 2 we show that they
do improve the Fibonacc1 program (and so a fortion preserve its termination). The
reasoming employed suggests a general argument that

(1) mmprovements can be introduced by rewriting lemmas and by abstraction;
(ii) instantiation and unfolding leave efficiency unchanged;

(m1) folding at least preserves efficiency provided that the argument of the equation
used 1n the substitution 1s lower 1n some well-founded ordering than that of the equation
being transformed.

Strategy. A simple strategy for applying these rules turns out to be quite powerful, and
1t will be used in the examples which follow. Thus.

(a) Make any necessary definutions.

(b) Instantiate.

{c) For each nstantiation unfold repeatedly. At each stage of unfolding:
(d) Try to apply laws and where-abstraction.
(e) Fold repeatedly.

Stages (a) and (b) require some mnvention from the user, (d) requires his discretion,
but (¢) and (e), unfolding and folding, are routine symbol manipulation.
We discuss strategy and a semiautomatic implementation in Section 5.

4. Examples of Use of the Transformation System

Example 1. Fibonacci. Let us look at a case where we can make a substantial gain in
efficiency by introducing a new recursive definition which intertwines what were origi-
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nally separate computations. In this case we avoid computing certam values twice.

We use “eureka” to draw attention to certain unobvious steps in the transformations.
The reader may feel that certain other steps deserve “‘eureka.” In Section 5, however,
we describe a program mmproving system based on the transformation rules and show
how it can automatically achieve these steps. The steps marked here indicate the help the
user has to give the system at present.

We take the definition of Fibonacct made in Section 3 as our starting point. (We
regard x + 1 as an abbreviation for successor(x) and pairing as a primitive function
written (..., ...).)

1. f(0) &1 given
2. 1 &1 given
3. fe +2) < fx + 1) + fx) given
4. glx) & (fx + 1), flx) definition (eureka)
5. g(0) < (f(1). f(0)) instantiation
& (1, 1) unfolding with 1 and 2
6. gx + 1) &(flx +2),flx + 1)) mstantiate 4

& (flx + 1) + flx), fix + 1)

unfold with 3

& (u + v, u) where (u, v) = {f(x + 1), f(x)) abstract

& {u + v, u) where (u, v) = gix) fold with 4
7. fx +2) &u + v where (u,v) = flx + 1), fx)) abstract 3
& u + v where (u, v) = gx) fold with 4

Now notice the pattern of applying the inference rules. 4 comes by inspiration,
although motivated somewhat by 3. 5 and 6 are the obvious instantiations of 4; for each
of them we first unfold as far as possible, then for 6, abstract in order to fold. 7 is an
unobvious abstraction of 3 made in order to fold.

Thus the new definition of Fibonaccr is:

f(0) &1

iy &1

f&x+2) <u+vwhere (u,v)=gk)
g(0) <L 1

glx + 1) & @ + v, u) where (u, v) = g(x)

This computes the result in hinear time in x instead of exponential.

Example 2. The scalar product example combined two independent loops into one;
the Fibonacci example transformed a binary recursion 1nto a loop. Our next example
combines two binary recursions into one. We assume a tree 1s either zip of an atom or tree
of two trees, where fip and tree are constructor functions. We are given f, which
computes the sum of the tips, and g, which computes their product, and we wish to
compute both of them at once.

1. flip(x)) <x given

2. firee(x,y)) <&fix) + fiy) given

3. gltipx)) &x given

4. gltree(x, y)) <glx)*gy) given

5. hix) & {flx), glx)) given

6. h{up(x)) < flap(x)), gltip(x))) instantiation
& x, x) unfolding 1, 3

7. h(tree(x, y)) & (f(tree(x, y)), gltree(x, y))). instantiation
< ) + f), gx)*g(y)) unfolding 2, 4
& (u + v, wit) where (u, w, v, 1) = (fx), gx), fy), abstraction

g
& (u + v, wit) where ({u, w), (v, D) = (hix), h ().

Thus 2 computes both functions at once.
Example 3. Table of factorials. Suppose we want to make a table of factorials. We
may define naively:

folding with 5
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1. fact(0) &1

2. factin + 1) & (n + D+fact(n)

3. factlist(0) & nil

4. factlistin + 1) <& cons(fact(n + 1), factlist(n))

Thus factlist(4) is (24, 6, 2, 1), but each of these is computed afresh. Let us improve the
definition of factlist:

5. gn) & factin + 1), factlist(n)) defimition (eureka)
6 g(0) & (fact(1), facthist(0)) instantiate 5
<1, nil) unfold 2, 4, 1 and use
law about *
7. gn+ 1) & (factin + 2), factlist(n + 1)) instantiate 5
&A{(n + 2*fact(n + 1), cons(fact(n + 1), unfold 2, 4
factlist(n)))
& ((n + 2)*u, cons(u, v)) where (u,v) = abstract
{fact(n + 1), facthist(n))
& {(n + 2)*u, cons(u, v)) where (u,v) = fold with 5
gn)
8. factlistin + 1) <cons(u, v) where (u, v) = (fact(n + 1), abstract 4
factlist(n))
& cons(u, v) where (u, v) = g(n) fold with §

This new definition of factlist computes fact(n + 1) from fact(n), cutting down the
computation from time 72 to time n. Notice, however, that to do factlist in ascending
order is not easy with our technique and seems to require an extension of the rules. We
are currently investigating this problem.

Example 4. Testing trees for equality of frontiers. Another example of a more
substantial nature 1s a program to test whether two binary trees have the same frontier,
that is, the same sequence of atoms at their tips. An obvious defimition nvolves first
computing the frontier list for each and then comparing these two lists element by
element. The comparison can stop as soon as two differing elements in these lists are
detected, but by that time we would have already computed the whole frontier lists, quite
unnecessarily. Because the two trees may differ n shape, it 1s not easy to compare the
two frontiers element by element as they are generated. Indeed this was proposed as a
problem to illustrate the virtues of coroutines. However, our transformation system can
produce a satisfactory recursive program provided the user defines a generalization of
the problem, namely comparing the frontiers of two lists of trees instead of two single
trees The formal defimtion of the problem and the details of the transformations
required are quite long, so we have relegated them to Appendix 1.

5. Strategies for Applying the Transformation Rules, and Implementation of a Program

Improving System
Instead of just having a set of transformation rules which can be freely applied n all
possible ways, we would like a more algorithmic system, avoiding search as far as
possible. We are experimenting with strategies for applying the rules such as the strategy
described briefly above Some observations seem helpful.

(i) Almost all the optimizing transformations consist of a sequence of unfoldings,
rewriting by lemmas, and then foldings.

(i1) Use of associativity, commutativity, and where-abstraction can usuaily be de-
layed until just before folding.

We use (ii) to cut down fruitless use of associativity, commutativity, and where-
abstraction by combining them with the folding process, using them only when they
make a fold possible. We call this combined step ““forced folding” and discuss it in more
detail later.
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The following heuristic algorithm is based on these assumptions. This algorithm 1s
applied to each instantiation of the equation to be improved.

Algorithm 1

1. Arbitranly do an unfold or rewriting by a lemma. Arbitrarily either repeat step 1 or
go to step 2
2. Do an arbitrary forced fold. Repeat step 2 until no more folding is possible.

The arbitrary choices are made 1n an exhaustive manner using backtracking. Algo-
rithm 1 1s quite laborious, a further observation gives us a faster but less general
algorithm

(i) In the cases where our equational method of writing programs using constructor
operations on the left-hand side ensures that unfolding cannot go on indefinitely, folding
can usually be delayed until all possible unfolding has been done, provided that all the
equations in the system are kept n fully unfolded form.

Algorithm 2 1s based on this assumption.

Algonthm 2

0. Unfold each equation until no further unfolding is possible.
For each instantiation of the equation to be improved:

1. Unfold until no further unfolding is possible.
2. Arbitrarily either do rewriting by a lemma and goto step 1 or goto step 3.
3. Do an arbitrary forced fold Repeat step 3 until no more folding is possible.

Both Algorithms 1 and 2 succeed for all the examples given here with the exception of
part of Treesort (Section 8).

A PROGRAM IMPROVING SYSTEM. We have implemented an experimental heuristic
program improving system based on the transformation rules and Algorithms 1 and 2.
As we have mentioned, an earlier program mmproving system has been described
(Darlington and Burstall [6]) which enabled the user to write his program in a high level
abstract language using recursion equations and have them translated mto more efficient
but less transparent versions. This earlier system used several separate transformation
processes; the transformation rules described here unify and extend these processes
except for storage overwriting, which we have not yet considered.

At present in the new system the work 1s shared, though not interactively, between the
user and the system. As the system is developed we hope to shift more work from the
user. At present (January 1976) the user s required to give:

(i) The st of equations augmented by any necessary definitions (i.e. the ones
marked with “‘eureka” in the examples).

(11) A list of useful lemmas in equation form (for use as rewrite rules) and statements
of which functions are associative or commutative or both.

(ii1) A list of all the properly instantiated left-hand sides of the equations on which the
user wants the system to work.

The system then searches through the space of all possible transformations of (iii)
looking for folds with (1) using either Algorithm 1 or Algorithm 2 as deswred. The
resulting new equations are printed out for examination by the user. At present no effort
is made by the system to assess the efficiency of these new definitions.

A sample of a dialogue with the system for the Fibonacci improvement is shown in
Table I.

To see whether a fold can be achieved we use a matching routine. Given two
expressions this seeks a substitution which transforms the first intc the second; for
example, givenn + (m + k) and (n + 1) + (m + k) it finds that the substitution n goes to
n + 1. Our matching routine has commutativity and associativity built into it where this is
specified; for example, givenn + (m + k) andm + (n + 1 + k) it can still find the same
substitution. It 1s also capable of matching to within an abstraction; an example of ths is
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TABLE 1. SamrLE DIALOGUE FOR FiBONACCI

START; (user starts dialogue)
INPUT EQUATIONS, END WITH Z (system responds)

f0) <1 (user inputs equations)
1) <1

fix +2) &flx + 1) + fix)
&l S (fle + 1), flx)
Zz

INPUT REWRITING LEMMAS, END WITH Z

z (no lemmas needed; assoclativity and commutativity are ndi-
cated when the functions are declared)

INPUT INSTANCES OF FUNCTIONS YOU

ARE INTERESTED IN, END WITH Z (system responds)

8

gx+1)

fx +2)

z (system starts work outputting results as it gets them)
g(0) &1, (system outputs any ground term 1t achieves)

gx+1) <& {u+v,u) where {u, v) = g(x)

. (system outputs any fold it achieves)
several other folds

f&x +2) €u + v where u, v) = glx)

several other folds

given below. Thus these laws are never applied unless they immediately result in a fold.
Plotkin [14] gives a general theory of building in laws to unification. We are grateful to
Rodney Topor for the associative and commutative parts of the matcher [15].

For an example of inbuilt where-abstraction, consider the Fibonacct example. Simple
unfolding gives the system g(x + 1) & (f(x + 1) + flx), fix + 1)), whach it 1s trying to fold
with g(x) & (fx + 1), flx)).

The matching routine spots that all the necessary components for a match with (f(x +
1), fix)) are present within (f(x + 1) + fix), f(x + 1)), and it forces the rearrangement of
the latter into (u + v, u) where (u, v) = (f(x + 1), f(x)) by applying abstraction; this folds
immediately

FuTture DEVELOPMENTS. A desirable next stage in the development of our system is
to get 1t to produce automatically the definitions that the user currently has to supply.
This 1s where a lot of the cleverness of the optimization resides. Though in a number of
cases it is clear how to do this theoretically, it is not yet clear whether it can be done
efficiently without excessive search. The idea is to expand out to some extent the
computation tree generated by the equations and then to look for a match between the
higher nodes in this tree and the lower ones. We need a substitution which when applied
to the lower nodes gives the higher ones.

Consider, for example, the list of factorials problem above where we were given the
equations

fact(n + 1) & (n + D#fact(n)
factlist(n + 1) <& cons(fact(n + 1), factlist(n))

We would like to express factlist in terms of some new function, say g, which would
itself have a recursive definition of the form g(n + 1) < --- g(n) - -- or, more generally,
glon)) & --- g(n) - - for some arbitrary substitution o.

Since we cannot expand factlist(n + 1) further, we try facdist(n + 2); thus

factlistn + 2} <& cons(fact(n + 2}, factlist(n + 1))
& cons((n + 2)y*fact(n + 1), cons(factin + 1), factlist(n)))

Pictonally the execution tree 1s of the form
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factlist(n + 2)
factin ¥ 2) factlistin + 1)

factin + 1) factlist(n)

We notice that the substitution o(n) = n + 1 takes the pair of terms on the bottom line
to those in the previous line. Thus if we put

gn) & {fact(n + 1), factlist(n))

we can express factlist(n + 2) in terms of g(n + 1) and express g(# + 1) n terms of g(n).
Similarly in the Fibonacci example we have the definition fx + 2) & f(x + 1) + f(x).
Even without further expansion we have the computation tree

fe+2)

/\

fe +1) f(x)

and notice that we can find a substitution o(x) = x + 1 which takes the lower pair of
nodes f(x + 1) and f(x) to the higher (overlapping) pair f(x + 2) and f(x + 1). Thus putting
g(x) & (f(x + 1), f(x)) we can express f(x + 2) in terms of g(x + 1), and express
g(x + 1) in terms of g (x).

Thus we see that the general approach 1s to expand out the computation tree and seek
a substitution, taking some lower ‘slice’ across it mto a higher slice across it. It is
appropriate for examples where the auxiliary definition is a tuple of terms occurring in
the computation, but we will see other examples where it does not work. In Section 6,
recursion to iteration, we will need to introduce an extra variable, and in Appendix 1 we
generalize from an element to a list of elements. Still it does show some rationale for
auxthary definitions.

One further development we wish to incorporate in the near future is to give the
matcher the ability to synthesize subsidiary functions. Further details of this technique
can be found in Darlington [7].

6. Conversion to lterative Form

The same transformation system can be used to convert from recursive to iterative form.
We say that a set of definitions of functions {f;, - , f,,} are in 1terative form if for each
equation f,(x,, **- , x,) < E, either E does not contain any of the f,, or it is of the form
fE,, -+ , E,) and E,, --- , E, do not contain any of the f,, or it is a conditional
expression whose alternatives are of one of these forms Such recursive definitions can be
trivially rewritten as loops with the f, as labels. The transformation is not automatic, as
we have to introduce a new definition each time; however, these definitions are all of a
similar pattern and are “generalizations” of the original function definition, replacing
subexpressions on the right by variables and including the variables as extra parameters;
in each case the major operator on the right 1s associative. Such generalizations were
central to the success of the Boyer-Moore program prover |2}, and we have profited
from the studies of Aubin [1] and Moore [13] who extended that prover to deal with
programs in the above iterative forms; they use generalization to translate from iterative
to truly recursive form (the opposite approach to ours).
Example 1. Factorial.

1. factorial(0) &1 given
2. factorial(n + 1) < (n + 1)*factorial(n) given

Introduce a new function f by generalizingn + 1 to u.
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3. fin, w) & uxfactorial(n) definition (eureka)
4. f(0, u) <Su instantiate, unfold
5. fn + 1, u) < ux((n + L)*factorial(n)) mstantiate , unfold
<& fln, ux(n + 1)) associativity of *, fold with 3
6. factorialln + 1) &fn,n+ 1) fold 2 using 3

This definition (1, 6, 4, 5) is 1n 1terative form.

A more succinct definition would be obtained by replacing 1 and 6 by factorual(n) &
f(n, 1). Our rules, as they stand, do not allow us to derive this, but in Section 7 we discuss
an additional rule which would yield it.

Example 2. List reverse.

1. reverse(nil) =77) given
2. reverse(a :: x) <& reverse(x) ) (a :: nil) given

(:: and () are infixes for cons and concat; see Section 3 for definition.)
Introduce a new function f by generalizing a :: nil to u.

3. flx, w) & reverse(x) O u definition (eureka)

4. f(nil, u) &u mstantiate and unfold

5. fla::x,u) & (reverse{x) () (a :: nil)) {) u instantiate and unfold
& flx, (@ ml) O u) associativity and fold

(€ f(x, a :: u) if we allow further unfolds, which is however contrary to our mechanzed
strategies.)

6. reverse(a ::x) < f(x, a :: nil) fold 2 with 3

Again this is n iterative form As before reverse(x) & f(x, nil) instead of 1 and 6 would
be more succinct but requires the extra rule described in the Section 7.

Example 3. Frontier of a tree. This example uses the same generalization but does
not produce an iterative function. It produces an equation of the form

f(xl’...’xﬂ) @f(El,"',E")

but the E, do contain f The new defimition, however, 1s faster.

As 1n a previous example, by the frontier of a tree we mean the list of its tip elements
We need two constructor functions: fip (to indicate a tip element) and tree (to form a
binary branch).

1. fronuer(tip(a)) <a ::nil given

2. frontier(tree(tl, 12)) <& frontier(t1) () frontier(t2) given

Introduce f by generalizing

3. fit, u) & frontier(t) ) u definition (eureka)

4. fltip(a), u) &Eau instantiate, unfold

5. fltree(tl, t2), u) & (frontier(tl) {) frontier(t2)) () u mstantiate, unfold
< flel, fe2, u)) associativity, fold,

fold
6. frontier(tree(tl, 12)) <& fitl, fronner(t2)) unfold 2, fold with 3

This definition (1, 6, 4, 5) 1s faster since 1t only uses :; and not ().
fronner(t) & f(t, nil) is more succinct, but as before it needs an extra rule.

7. An Extra Transformation Rule: Redefinition

The transformation rules described so far have allowed us to start with a defimtion of a
function, nstantiate it, unfold, and fold to get a new recursive definition of it. But
sometimes for the sake of efficiency we may wish to move in the opposite direction. Here
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1s an example of an improvement which cannot be made by our system so far (this 1s due
to Michael Paterson). We define f by

1. f(0) &0 definition

2. fin + 1) & fn) definition

Now a better defiition of f would be
fn) <0 (7

but this is clearly not obtamable by instantiation, unfolding, and folding, having f(n) on
the left.
But the reverse direction can be done by our rules:

3. f'(n) &0 definition

4. f'(0) &0 mstantiate

5.fn+1) &0 instantiate
& f'(n) fold with 3

Now Dana Scott pointed out to us recently that we could introduce an extra rule into
our system, making use of the fact that if we can transform a function definition (say 3)
nto a set of equations (4, 5) identical to those defining some previous function (1, 2), we
know that the newly defined function is equal to the previous one wherever the latter
terminates. (We should check the totality of the previous definition to ensure that the
new one does not introduce spurtous values where the previous one failed to terminate.)

Since we have just shown that f’ satisfies 4 and S and these are identical to 1 and 2
which define f, we may use this to redefine f to be

3. fn) <0

We call this new rule “redefinition.” In general we are given a function (totally)
defined by some equations and proceed as follows:

(a) Make a new definition for the given function (eureka)

(b) Transform this new definition by our previous rules to get equations identical to
the original equations for the given function.

(c) Replace the onginal equations by the new definition (redefinition rule).

We have not had time to explore the utility of this new rule, which essentially allows us
to reverse our previous transformations. However it does clear up a difficulty mentioned
in our recursion to iteration examples above Recall that our final definttion of factorial
was

1. factorial(0) &1

6. factorualn + 1) &fin,n + 1)

4. £0,u) Eu

5. fin + 1, u & fn, ux(n + 1)

Now to obtain a better (smaller although no faster) version

7. factorial’'(n) & fin, 1) definition (eureka)
8. factorial’(0) < fi0, 1) instantiate 7
&1 unfold with 4
9. factorial'n + 1) & fin + 1, 1) instantiate 7
& fn,n + 1) unfold with 5, use 1xx = x

Now we use our new rule, noting the identity of 8 and 9 with 1 and 6 and replacing the
latter with a copy of 7.

10. factorial(n) & fin, 1) redefinition

Similarly we can obtain succinct definitions for reverse and frontier.
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We have not implemented this new rule in our mechanized system, this could be put in
as an extra option with the user asserting, say

factorial(n) & fin, 1) by redefinition

where the system could look up 1 and 6, instantiate the new definition similarly, unfold,
check the identity of the equations so obtained with the previous ones, and then remove
1 and 6 in favor of this new definition.

8. Abstract Programming and Data Type Change

In Darlington [5] and Darlington and Burstall [6] a method was presented where
hierarchically structured functional programs were flattened into programs expressed
entirely in terms of the lowest level primitives, with consequent gain 1n efficiency but loss
of understandability. This was achieved (for straight line programs only) by a technique
of combined optimization with replacement of procedure calls by their bodies. The
implemented system had extra techniques built into it which took advantage of known
relationships between the abstract objects and their representations (in this case sets and
Iists or bit strings) to perform extra optimizations. We now propose a new technique for
structuring such programs and show how the new method can flatten such programs
(which need not now be only straight line ones), doing away with the need to build in
representation dependent optimizations.

The usual method of structuring data is to write primitive functions for the higher,
more abstract data types in terms of the lower data types (see for example Hoare [10]).
We propose to remove the need to provide these and just ask for a single representation
function mapping the lower data type onto the higher. We are grateful to Hoare for
suggesting this simplification to us. The advantages of this method are

(i) Less work 1s involved for the programmer.

(1) The division between abstract object and representation 1s much cleaner and
more natural. All abstract programs are written enfirely in terms of abstract primitives.
The representation relationship was implicit in the earlier method but was never made
clear even to the programmer himself.

(1ii) Resulting programs are much more modular and easier to modify If a user wants
to add a new representation all he has to do is to add one new representation function,
not rewrite a number of functions.

We still have the problem of rewriting the abstract programs in terms of the lower
primitives. We show how our method accomplishes this by means of another simple
example, which we hope also clarifies this method of structuring programs.

Example 1. Twisting a tree.  Suppose someone wishes to write programs to manipu-
late trees labeled with atoms at their nodes. He can defmne labeled trees inductively,
using constructors niltree and ltree.

niltree € labeled-trees
ltree: atoms X labeled-trees X labeled-trees — labeled-trees

(That is, liree 1s a three-argument function taking an atom and two labeled trees and
producing a labeled tree )

Assuming a Lisp-like machine on which binary trees are available as a basic data
structure with constructors nil and parr,

nil € binary-trees
atoms € binary-trees
pair: binary-trees X binary-trees — binary-trees

The programmer could choose to represent the labeled trees using for each node a
binary tree consisting of first the atom and second another binary tree consisting of the
left and right subtrees. For example, pair(A, pair(ml, pair(B, pair(nil, nil)))) represents
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ltree(A , nultree , ltree(B , niltree , niltree)). To do this he would simply define the representa-
tion function

R: binary-trees — labeled-trees
R(nil) & niltree

R(pair(a, pair(pl, p2)}) & ltree(a, R(p1), R(p2))

The user can now write labeled tree mampulating functions entirely in terms of the
labeled tree primitives. A very simple one is

twist: labeled-trees — labeled-trees
twist(niltree) & niltree
twist(ltree(a, 1, 12)) < ltreela, twist(t2), twist(11))

We now want to produce TWIST. binary-trees — binary-trees which simulates this on
concrete data. Our method requires availability of a coding function C, mverse to the
representation function R, such that R(C(r)) =t We have some 1deas on how to produce
such inverses automatically, but they are tentative and we omit them here. In this case C
is
C: labeled-trees — binary-trees
Clniltree) < nud
Clltree{a, 11, 12)) & par(a, par(C(t1), C(t2)))

We want TWIST(p) = C(wist(R(p))). Thus

ABSTRACT labeled- twist IR tabeled- ABSTRACT
trees » trees
R C
(representation) (coding)
CONCRETE binary- TWIST bunary- CONCRETE
trees —) trees

?

But this is not at all a usable definition since 1t uses twist, R, and C, which are not
implemented. Let us massage it a little.

TWIST(ul) & C@wist(R(mil))) nstanuate
& il unfold
TWIST(par(a, pair(pl, p2)})
& Cewist(R(pair(a, pair(pl, p2))))) instantiate
& pairta, par(C{twist(R(p2))), Ciwist(R(p1))))) unfold
& pair(a, paur(TWIST(p2), TWIST(p1))) fold

This gives a recursive definition of TWIST in terms of the available concrete primitives
il and pawr.

Example 2. Treesort. Now consider the Treesort algorithm of Floyd [8]. This is a
sorting algorithm using arrays to represent trees. The algorithm makes repeated calls to a
procedure siftup, which takes an arbitrary tree and moves its root element along some
branch as long as 1t 1s smaller than one of its successor elements. We show here how a
version of this algorithm acting on concrete data (arrays) can be obtained systematically
from one acting on abstract data (labeled trees). The abstract labeled trees can be
represented concretely by an array A of atoms, where the successor nodes of A(n) are
A(2n) and A(2n + 1). For example, the tree

) /“\C
A NEZAN
h/ \, / £

J
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is represented by the array A:
t 1 23 456 7 8 9 10
AG@) a b c d e f g h iy
Now we have to deal with subtrees such as

N

SN

and these will be represented by parfial arrays such as A':
1 2 458 9 10
AG@ b de h i g

We need to form a notation for such partial arrays by selecting out certain indices from
some other array. Let k be the size of the original tree; for simplicity we keep it fixed
throughout. Now we define n1, for any n = 1, to be the set of indices corresponding to
the subtree rooted at n; thus

nt €g fn >k
Shtun)t Uu@Ee + 1D otherwise.

In the example, 21 = {2,4,5,8,9,10}, the indices of the left-hand subtree.

We call the set of partial arrays with subscripts mn 1 arrays,; for example A’ above is
n arrays,. We call the set of trees which they represent trees,. To be precise, arrays, is
the set of functions (n T — atoms), and trees,, is defined inductively by trees, is {niltree} if
n >k, and otherwise by trees,, is the set of all trees of the form ltree(a, t1, t2) where a is an
atom, ¢1 is 1n trees,, and t2 in trees,, .-

An important operation corresponding to taking a subtree of a tree will be taking a
subarray of an array. If A 1s inarrays, andmisinn? , we write A, for the restriction of A
to indices in m 1 . So, for example, 4’ in the above example could be written A%, being
the partial subarray rooted at 2. In general, if A is in arrays,, then A,, in arrays,, and
Agyyq In arrays,,,, represent the left and right subtrees of the tree represented by A.
Clearlyfm € n?, An(m) = A(m) and (4,),, = Ap,.

Now for each pair of domains (arrays.,, trees,) we must define a representation function
r, and a coding function ¢, inverse to it Thus

r,: arrays, — trees, (representation, concrete to abstract)
Cy: lrees, —> arrays, (coding, abstract to concrete)

They are defined recursively by

ry(A) < niltree ifn >k (fn >kthennt =
and arrays, contains only the
empty array )

ro(A) < ltree(A(n), ran(Asn), Fanei(Aznir)) otherwise

colrultree) &

calltree(a, t1, 2)) < {(n, a)} U con(tl) U ¢2p44(62)

These have the desired property that if A & arrays,, then ¢,(r,(A)) = A.

We will not do the whole of the treesort algorithm, but concentrate on the main
procedure, which 1s called “siftup,” by Floyd. (Since we write our trees with their roots
up in the air, we should call it “siftdown”, we just use “sift.””) It produces a rearranged
tree with the top element moved down a branch so far as possible over elements which
are larger than it. (The idea of the algorithm is to get a tree with each branch sorted in
order and to maintain this state of affairs when new elements are added, all of this using

sift.)
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There are a number of cases in the definition of sift, depending on the relative sizes of
the top three elements of the tree. Since they are all similar, we discuss just one case.
The abstract function is

sift: labeled-trees — labeled-trees
In the case al < a2 and a2 = a3 it is defined by

sift(liree(al, ltree(a2, 111, £12),
ltree(a3, 121, 122)))
& ltree(a2, sift(ltree(al, t11, £12)),
lrree(a3, 121, 122))

We now define a function SIFT, on concrete data: for eachn =1,

SIFT,. arrays, — arrays,
SIFT(A) € calsift(ri(A)))

This cannot be run as 1t stands since it uses the abstract sift, we wish to transform 1t into
one which can be run.

We consider the typical case A(n) < A(2n) and A(2n) = A(2n + 1) (assuming that 2n +
1 = k so that these elements exist).

SIFT,(A) < {n, A2n)}
U conlsift(tree(A(n), ran(Asm), ane1(Aans))))

U Cant1{Font1{A2nt1))
by unfolding with the defimitions of r,, sift, and ¢,,.

(Note that we view partial arrays as functions, 1.e. sets of index value pairs, and use
union to combine them, {(n, A(2n))} 1s the partial array with just one index n.)

First co(rw(B)) = B, for any m and B € arraysn, so the last term 1s just Agyqs-

Now to do a fold on SIFT we would like the second term to be of the form SIFT,,(A") -
for some m and some A’. Since 1t is 1n arrayss,, m = 2n; now SIFT,,(A’) 15

CanlSift(rzn(A"))), 1€, Conl(sift(ltree(A’ (2n), rsn(Ain), Fini1(Atns))),

so comparing this with the second term,
A'(2n) = An), Al =Ampm A = Amnr-

That 15, A’ 15 like A, except that its value for index 2n is A(n) instead of A(2n). This
suggests that we mntroduce a substitution operation on arrays such that B[i/a] is an array
like B but with value a for 1ts ith element. Formally, Bl1,/a,, - - , i,/a,)1s an array B’
such that B'(iy) = a,, - - - , B'(t;) = a, and otherwise B'(j) = B(j). Now we can put A’ =
Agn[2n/A(n)].

This digression motivates us to rewrite SIFT,(A) as

SIFT,(A) & {(n, A(2n))}
U canlsift(itree(A' (2n), ran(Adn), Pans1(Aine1))))
U A2n+1
where A’ = A,,[2n/A(n)] (eureka)
<& {(n, AQ2n)}
U CZn(Siﬂ(r2n(A,)))
U A2n+1
where A’ = A, [2n/A(m)]
by folding with the definition of r
& {(n, A@2n)}
U SIFT,,(A")
U Az
where A’ = A,,[2n/A(n)]
by folding with the definition of SIFT.
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This is the required recursive definition for SIFT. It operates on partial arrays. The
substitution operation corresponds to an assignment to one element of the array.

The key step above, marked with “eureka,” involves some tricky forethought and
looks hard to mechanize. However it is a preparation for folding just as is the use of
associativity in other examples; one might imagine a matching algorithm which has built
into it various properties of substitution and uses them to force a fold. We have run the
above transformations on our system, but only by supplying the key substitutions as
rewrite lemmas. The intuitions behind these manipulations are less complex than our
rather barbarous notation would suggest, and this is an open area for research.

But we are still not finished because Floyd’s sift procedure is iterative, and it 1s
important that one can work iteratively on a single array without copying. The stout-
hearted reader may follow the further transformations required; others may skip to
Section 9.

First we notice that we can use the properties of substitution to express the three terms
in the above definition for SIFT, using just one array A”:

SIFT(A) & {(n, A"(nN)} U SIFT,,(A3,) U Ay
where A" = A[2n/A(n), n/A(2n)] (eureka)

(This makes sense because it means “Exchange the nth and (2r)-th elements of A and
SIFT the subarray rooted at 2n.”)

Notice that part of A” is being replaced by a SIFTed version. This suggests a general
operation of replacing the subarray of A rooted at m by B, and we define, for A in
arrays, and B in arrays,, where m € nt,

A+,B=A4-A,)UB (eureka).

This enjoys “associativity,” which we know to be helpful in get‘tmg iterative programs.
A+ B+,C)=A4 +,B)+,C (lemma).

This + operation enables us to rewnite SIFT, simply as

SIFT (A) & A" +32p SIFT2,(A%)
where A" = A[2n/A(n), n/A(2n)]

Now we can analyze the computation of SIFT, by defining a subsidiary function to
describe how it depends on A”,

Lm, B) & B +,, SIFT(B,) definition (eureka)

This produces an array like B, but with the subarray starting at m sifted B must be in
arrays,. (This enables us to write

SIFT(A) < I(2n, A”)
where A" = as above fold.)

Can we transform this definition of I to make 1t iterative? Yes, if we use associativity of
+ in the famihar way and do some rather ticklish rewriting of expressions involving +
and [ ].

Iim, B) & B +4(B" +4u SIFTyn(B3n))
where B" = B, [{2n/B,,(m), m/B,(2m)]
by unfolding with our last recursive definition of SIFT
¢ (B +m BH) +2m SIFsz(Blzlm)
where B” = B,|2m/B,(m), m/B,(2m)]
by associativity of +
& B” +om SIF g0 (B3m
where B" = B[2m/B(m), m/B(2m)]
by various niggling properties of +, [ ], and subarray formation (eureka)
& I.(2m, B")
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where B” = B[2m/B(m), m/B(2m)]
by folding with defnition of I,.
This definition is iterative and quite simple. The road to it was hard and littered with
eureka’s. We conclude that the basic transformation method works but runs up against
the obscurity which usually bedevils reasoning about data-structure overwriting. We
hope to stimulate further research on such reasoning.

9. Conclusions and Future Work

We have tried to abstract some general method from the particular tactics incorporated
in our previous improvement system (Darlington [5], Darlington and Burstall [6]). Work
is continuing, and on the theoretical side the following problems are open at the moment
(January 1976).

(i) How wide a class of program improvements falls within the scope of our transfor-
mations? Can one obtain any formal characterization of this class?

(i1) What are necessary and sufficient conditions that guarantee that our transforma-
tions produce an improvement? Can we indeed make a general argument on the basis of
the one for Fibonacci in Appendix 2? ’

On the practical side, work 1s continuing with the implemented system to investigate
the behavior of different strategies. We would like to mechanize the generatization of old
definitions to new ones, not just as outlined in Section 5 but also where the new
definition needs an extra parameter, as in Section 6, or where totally new definitions are
needed, as in Appendix 1. We would also like to look at the problem involved in
structuring the optimization of large programs.

The system can be simply extended to achieve the synthesis of algorithms from their
mmplicit (nonexecutable) definitions. Darlington [7] gives simple examples of this.
Recently the same author has used this techmque to investigate the structure of classes of
algorithms by attempting to synthesize all algorithms in a class from a common high level
defimition. The first class to be investigated was the sorting algorithms, and so far six
well-known sorting algorithms have been synthesized (manually) from one high level
definition.

We should mention relevant work by other people. Courcelle and Vudlemin [4]
provide a mathematically rigorous treatment of an inference system for a simple recur-
sive language. Manna and Waldinger [12], in their work on program synthesis, mnde-
pendently develop a rule similar to our folding rule, although their presentation of the
underlying ideas 1s rather different. In a more general way our work 1s akin to work by
Gerhart (9] on transformations, to the Harvard work on program manipulation (Chea-
tham and Wegbreit [3]), and to the large literature on optimization techniques in
compilers.

Appendix 1. Testing Trees for Equality of Frontiers

This is an example where the obvious definition may compute values which are never
needed, a problem proposed originally to illustrate the usefulness of coroutines. We have
no coroutine facility in our recursion equation language, but we can achieve a similar
economy in computation, although in a rather less general way.

The problem is to test whether two given binary trees have the same frontier, where
the frontier of a tree is the list of its tips. Thus in Figure 1 the trees (1 and ¢2 are equal in
this sense, but ¢1 and ¢3 are not. A natural approach is to define the desired testing
function egtree 1n terms of a function frontier which produces a list from a tree, getting (A
B CDEF)fortl and (A B C D E F) for t2, and also a function eqlist to test whether
these two lists are equal. But then for ¢1 and ¢3 we foolishly compute the whole of (4 B C
D E F) and (G B C D E F) before noticing that they disagree in the very first element.
We will try to obtain an improvement which avoids this.

We need a data type atom, from which we derive a data type tree, using constructor
functions #p to indicate a tip and tree to combine two subtrees
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3 L2 t3

A
A 8 C c D
D
E F B C F G B E F
D E
frontier(tl) =(ABCDEF
fronter(t2) =ABCDERP
frontter(t3) =(GBCDEF

eqtree(t1, 12)
eqtree(tl, t3)

eqlist(frontier(t1), frontier(t2)) = true
eqlist(fronner(t1), frontier(t3)) = false

Fic 1 Trees

up. atoms — trees
tree. trees X trees — trees

We also need lists of atoms and of trees, so for any type alpha let

nil € alpha-lists
cons' alphas X alpha-lists — alpha-lists

We again wnte x :: X for cons(x, X).

We make a habit of specifying the type of each new function, using the usual notation
f: 8§ T, although this 1s outside our formalism.

We first define some auxihiary functions, then the mam function eqtree (Figure 1)
which tests trees for equality of their frontiers.

concat: alpha-lists X alpha-lists — alpha-lists (concatenation, alpha 1s any type)

We again write X () Y for concat(X, Y)

1. nil )Y &Y
2. xX)0Y Ex X0

eqlist: atom-lists X atom-lists — truth values (list equality)
. eqlist(nil, nil) & true
. eqlistnil,y 1Y) & false
. eqlist(x :: X, nil) & false
. eqlist(x :: X,y 1 V)& eq(x, y) and eqlist(X, Y)

where eq tests equalhty of atoms

fronner: trees — atom-lists  (list of atoms at tips of tree)
. frontier(tip(a)) & a ::nil
8. frontier (tree (11, t2)) & frontier(t1) () frontier(t2)

eqtree: trees X trees — truth values (tree equality, same tip sequence)

9. eqtree(s, t) < eqlist (fronuier (s), frontier (t))

[= NV T SR

~J

If we now try to improve egtree by the methods used above, we have no success. To
overcome this we introduce a more general function, EQTREELIST (see Figure 2)
which tests whether two lists of trees have the same tip sequence. (We use upper case for
variables taking lists of trees as values and for functions taking lists of trees as arguments,
analogous to but distinct from the variables and functions 1n lower case.) The motive
here is that as we decompose a tree the current state is some cross section across the tree,
but this is just a list of subtrees In the coroutine method these subtrees would be there
behind the scenes, associated with coroutine activations. We have to make them vulgarly
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T1 ( P )
A/\B E/\F

T2, )
B/\C /<\ F
D E

T3 ( )

FRONTIERLIST(T1) = ((A B) (O) (D)(E F)

FRONTIER(T1) = flatten(FRONTIERLIST(T1))
=(ABCDER
FRONTIER(T2) =(ABCDEF

EQTREELIST(T1, T2) eqlisttFRONTIER(T1), FRONTIER(T?))

= true

Fic 2 Tree lists

explicit. Again we need an auxiliary function FRONTIER to give the list of atoms at the
tips of the whole list of trees; thus FRONTIER:  tree-lists — atom-lists  (see Figure 2).

10. FRONTIER(T) <& flatten(FRONTIERLIST(T)) {eureka)

where FRONTIERLIST takes a list of trees to the hist of thewr individual frontiers
FRONTIERLIST: tree-lists — atom-list-lists

11. FRONTIERLIST(nil) < nil
12. FRONTIERLIST(t :: T)< frontier(t) :: FRONTIERLIST(T)

and flatten takes this hist of lists to a list of atoms, by concatenating its elements
flatten:  atom-hist-lists — atom-lists

13. flatten(nil) < n
14. flatten(l :: L) & 1 () flatten(L)

EQTREELIST: tree-lists X tree-lists — truth values (equality for tree lists)
15. EQTREELIST(S, T) < eqist{ FRONTIER(S), FRONTIER(T))

Now we can use transformations to redefine eqtree in terms of EQTREELIST since a
tree is a singleton hist of trees. We need a lemma, / il = [

16. eqtree(s, t) < eqlist(frontier(s), fronsier(t)) repeat of 9
& eqlist(frontier(s) ) nil, frontier(t) () ni) lemma about {} (eureka)
& EQTREELIST(s :: nil, ¢t :: nil) fold 13, 14, 11, 12, 10, 15

Now let us improve EQTREELIST. It is most clear if we start on FRONTIER,
transforming each equation.

17. FRONTIER(nuil) & flatten(FRONTIERLIST (nil))  instantiate 10
& il unfold 11 and 13
18. FRONTIER(up(a) -: T) < flatten(FRONTIERLIST (tip(a) :. T))
instantiate 10
& (a :: nil) ) flaten(FRONTIERLIST(T))
unfold 12, 7, 14
& (a :: nil) ) FRONTIER(T) fold 10
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19. FRONTIER(tree(t1, 12) :: T) < flatten(FRONTIERLIST (tree(t1, t2) :- T))
instantiate 10
& (frontier(tl) ) frontier(t2))
) flasten(FRONTIERLIST(T))
unfold 12, 8, 14
& frontier(tl) () (frontier(t2)
() flarten(FRONTIERLIST(T)))
associativity of {)
& FRONTIER(1 :: (22 :: T))
fold 14, 12, 14, 12, 10

(Notice that the use of associativity here requires some insight since an alternative step is
to fold with 10 immediately, which does not give the result we want )

Finally we use this new definition of FRONTIER to improve EQTREELIST itself,
and thus improve eqtree which uses it

20. EQTREELIST(nil, nil) & true instantiate 15, unfold 17, 3
21. EQTREELIST(tip(a) :: S, nil) & false instantiate 15, unfold 18, 17,2, 5
22. EQTREELIST(nil, tip(h) :: T) & false similarly
23. EQTREELIST(tip(a) :: S, tip(b) :: T) < eqla, b) and eqlist(tFRONTIER(S),
FRONTIER(T))
instantiate 15, unfold 18, 2,1, 6
& eqla, b) and EQTREELIST(S, T)
fold 15
24. EQTREELIST(tree(s1,s2) :: S, T) & eqlisttFRONTIER(s1 :: (s2 :: §)),
FRONTIER(T))
mstantiate 15, unfold 19
& EQTREELIST(s1::(s2:: 8), T)
fold 15
25. EQTREELIST(S, tree(t1,:2) :: T) & EQTREELIST(S, 11 :: (12 :: T))
similarly

20-25 give a direct recursive definition of EQTREELIST with no auxiliary functions.
This reduces each tree from the left-hand end as far as necessary, as shown n the
example in Figure 3 24 and 25 are used in any order (nondetermimstically) until the first
tip in each treelist is reached; then the tips are compared using 23, which stops the whole
process immediately if they are not equal. 20-22 cope with the mil cases. Execution of
EQTREELIST 1s radically different from that using the original definition 9, which built
up the concept in a well-structured but computationally inefficient way involving unnec-
essary computation of large intermediate lists.

Appendix 2. Improving the Fibonacci Function

To examne whether a sequence of transformations by our rules improves the efficiency
of the program, let us try to prove that this 1s the case for the Fibonaca1 example. This
should throw light on the principles involved without requiring an elaborate and imper-
spicuous formal apparatus

First we rewrite the transformations, giving a subscript to distinguish each new
function symbol as we define 1t, since these variants, although they may not differ in
meaning, certainly differ in efficiency.

We concentrate on the auxihary function g, which 1s defined n terms of the original
Fibonaca function f.

g(x) & flx + 1), fx)) definition
£:(0) & (1), f(Op mnstantiate
&2(0) &1, 1 unfold

g+ €fx+1+1,fx+1) mstantiate
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t1 t2;
B\ A
A B C D G

Tt ( ) C D
7 ( )
A B C D
A
AN N
A B C D C D
(g ) T2( )
C/\D 00\
Ti1 B ) C D
C D ( )
G/>\
C D
T21’(G- )
C/\D

eqtree(tl, 2) = EQTREELIST(T1, T2) = EQTREELIST(T1', T2)
= EQTREELIST(T1", T2) = EQTREELIST(T1", T2')
= eq(A, A) and EQTREELIST(T11, T21)
= EQTREELIST(T11, T21) = EQTREELIST(T11, T21’)
=eq(B, G)and . = false

Fic 3 Using improved defimtion of egtree

gx +1) &(fx+ 1)+ fx), f(x + 1)) unfold
gsix +1) <& + v, u) where (u, v) = (f(x + 1), f(x)) abstraction
gelx + 1) & (u + v, u) where (u, v) = g(x) folding
grolx + 1) &< (u + v, u) where (u, v) = g,,(x) folding

Notice that folding is done in two steps, first replacing an instance of the right-hand
side of the onginal g equation by the left-hand side, which still leaves g ultimately
defined n terms of f, then replacing this by a recursion. We call the new function g7,
because we wish to imply that the equation for g, is to be used whenx = 0.

Let us now write ¢[n] to denote the number of anthmetic operations needed to
compute the value of the function symbol ¢, using its equations, for the number n as
argument. For Fibonacc ths is the number of additions (ignoring +1, successor).

Now instantiation and unfolding do not affect the number of operations, so

g.{0] = g,[0] = g[0] and gilx + 1] =gs{x + 1] = g[x + 1].

By a trivial induction f{x + 1]= 1ifx = 1, so ggfx + 1] < gulx + 1]1fx = 1 (that is, where-
abstraction makes an improvement).
Clearly the first stage of folding does not affect the number of operations, so g¢[x + 1]
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= gslx + 1] <g[x + 1] if x = 1. We wish to show from this that g;,[x + 1] <g[x + 1]ifx
= 1. But for thus it is easy to show by induction that for all x = 0,

grax]l <glx] ofx =2,
=g[x] fx=00rx = 1.

Base. Immediate ifx = 0orx = 1.

Step. Suppose x = 1 and g;,[x] < g [x]; we need to show that g, ,[x + 1] < g[x + 1].
But the equation for g, , 1s just like that for g4 with g;.(x) for g(x). By our hypothesis that
g120x] = glx] we have g;[x + 1] = golx + 1]. But we already have gglx + 1] <g[x + 1], so
grafx + 1] <gfx + 1].

To summarize, we have proved directly that where-abstraction makes an improvement
and that folding preserves it (in fact it amplifies it by doing it at each level of the
recursion)

In general one can see that the improvements are introduced by where-abstraction or
rewriting lemmas, and also that folding will preserve any such improvements provided
that the base case is no worse and that the argument of the equation used in the
substitution 1s lower in some well-founded ordering than that of the equation undergoing
the fold.
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